Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (9): 1440-1451    DOI: 10.16511/j.cnki.qhdxxb.2023.26.008
  车辆与交通 本期目录 | 过刊浏览 | 高级检索 |
全固态薄膜锂电池倍率性能
戚俊毅1, 方儒卿1, 吴勇民2, 汤卫平2, 李哲1
1. 清华大学 车辆与运载学院, 汽车安全与节能国家重点实验室, 北京 100084;
2. 上海空间电源研究所 空间电源技术国家重点实验室, 上海 200245
Rate performance of thin-film all-solid-state lithium batteries
QI Junyi1, FANG Ruqing1, WU Yongmin2, TANG Weiping2, LI Zhe1
1. State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China;
2. State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power-Sources, Shanghai 200245, China
全文: PDF(5776 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 全固态薄膜锂电池具有固态电解质层薄、 固固界面致密等特点, 可作为微小型设备的储能元件。 与传统锂离子电池相比, 全固态薄膜锂电池内部不含液态电解液, 反应与传质过程皆在固相中进行, 导致全固态薄膜锂电池的倍率性能一般较差。 为解决该问题, 该文基于磁控溅射和真空蒸镀技术制备了正极为钴酸锂、 固态电解质为锂磷氧氮(LiPON)、 负极为金属锂(Li)的全固态薄膜锂电池。 采用时频域配合和实验与仿真相结合的方法, 系统解析了影响全电池倍率性能的关键因素。 运用基于全电池倍率实验电压曲线的曲线平移分析方法及基于一维阻抗模型和阻抗谱的动力学参数辨识方法, 分析了电池内部不同部件、 不同物理过程对电池倍率性能的影响, 结合一维时域模型仿真结果得出如下结论: 电池中影响大倍率下放电总容量的主要限制因素为正极材料中的锂离子扩散过程, 放电末期正极扩散系数低是大倍率下放电容量衰减的主因; 影响瞬态放电功率的主要限制因素为固态电解质中锂离子的电迁移过程, 高固态电解质固相过电势是放电功率损失的主因。 基于上述结论, 该文提出了适当降低固态电解质薄膜厚度和缩短正极离子扩散路径等改进电池倍率性能的初步设计思路, 研究了一种全固态薄膜锂电池倍率性能的分析方法并得出了初步结论, 可用于进一步指导改进制备工艺。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戚俊毅
方儒卿
吴勇民
汤卫平
李哲
关键词 固态电解质薄膜电池倍率性能阻抗模型    
Abstract:[Objective] All-solid-state thin-film lithium batteries with advantages such as ultra-thin thickness, intimate interfacial contact, and simple structure have a promising prospect for application in portable and microdevices. Unlike the porous structures in conventional lithium-ion batteries, the electrode and electrolyte structures of all-solid-state thin-film lithium batteries are stacked in layers without any liquid electrolyte. Due to this structural layout, there is considerably high interface resistance between the electrode and electrolyte and relatively low ionic conductivity of the solid-state electrolyte, which lead to poor rate performance of the batteries when operated below a certain capacity demand.[Methods] Herein, an all-solid-state thin-film lithium battery with crystallization LiCoO2, amorphous LiPON, and lithium metal thin films have been fabricated via RF magnetron sputtering and high vacuum evaporation, respectively, while a lithium symmetric cell has been fabricated via electrochemical deposition. Through electrochemical experiments and physical models applied in the time and frequency domains, rate performance factors are systematically discussed and analyzed. Furthermore, in order to perform a detailed analysis of the rate performance of these thin-film batteries, it is necessary to obtain kinetic parameters corresponding to different physical and chemical processes of all the battery components. Here, electrochemical impedance spectroscopy (EIS) has been used to measure the parameters via the impedance spectrum of the Li1- xCoO2/LiPON/Li battery and the lithium symmetrical cell.[Results] The preliminary results of the electrochemical analysis method used on the voltage curve at different current rates showed that the diffusion process of lithium ions in the solid-state electrolyte or positive electrode was the origin of the main polarization causing low rate capacity. There was also a high rate of huge overpotential owing to the linear process of electron or ion migration. Based on the EIS under different lithium intercalation amounts in the positive lithium cobalt oxide and the one-dimensional frequency domain model, we obtained vital dynamic parameters of this battery. Moreover, a one-dimensional electrochemical time domain model with the dynamic parameters calculated above was introduced to further analyze the voltage curves. It was found that the mass transfer process in the solid-state electrolyte and the diffusion process in the positive electrode were the key physical and chemical processes of rate performance in the fabricated battery. Furthermore, the preliminary design was proposed to improve the rate performance of these batteries through an electrochemical model that reduced the thickness of solid-state electrolytes and shortened the diffusion path in the positive electrode.[Conclusions] This work provides an analytical method based on frequency and time domain physical models that are useful for accurately distinguishing and analyzing the impacts of various kinetic parameters of thin-film batteries. The method also allows for preliminary and practical conclusions for the rate performance of all-solid-state thin-film batteries. The mass transfer process in the solid electrolyte is the main factor affecting the power performance, while the diffusion process in the positive electrode is the main factor affecting the capacity performance. Knowing these parameters is helpful for fabricating and structuring the design of the battery.
Key wordssolid-state electrolyte    thin-film battery    rate performance    impedance model
收稿日期: 2022-04-25      出版日期: 2023-08-19
基金资助:国家自然科学基金联合基金项目(重点)(U1864214); 国家自然科学基金面上项目(52277220)
通讯作者: 李哲,副教授,E-mail:zhe_li@tsinghua.edu.cn      E-mail: zhe_li@tsinghua.edu.cn
作者简介: 戚俊毅(1997-),男,博士研究生。
引用本文:   
戚俊毅, 方儒卿, 吴勇民, 汤卫平, 李哲. 全固态薄膜锂电池倍率性能[J]. 清华大学学报(自然科学版), 2023, 63(9): 1440-1451.
QI Junyi, FANG Ruqing, WU Yongmin, TANG Weiping, LI Zhe. Rate performance of thin-film all-solid-state lithium batteries. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1440-1451.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.26.008  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I9/1440
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] TARASCOM J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359-367.
[2] JULIEN C M, MAUGER A, HUSSAIN O M. Sputtered LiCoO2 cathode materials for all-solid-state thin-film lithium microbatteries[J]. Materials (Basel), 2019, 12(17): 2687.
[3] 吴勇民, 田文生, 周罗增, 等. 全固态薄膜锂电池的制备与电化学性能表征[J]. 电源技术, 2020, 44(1): 4-8. WU Y M, TIAN W S, ZHOU L Z, et al. Preparation and electrochemical performance characterization of all-solid-state thin film lithium battery[J]. Chinese Journal of Power Sources, 2020, 44(1): 4-8. (in Chinese)
[4] WU T, DAI W, KE M L, et al. All-solid-state thin film μ-batteries for microelectronics[J]. Advanced Science, 2021, 8(19): 2100774.
[5] YU X H, BATES J B, JELLISON JR G E, et al. A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride[J]. Journal of the Electrochemical Society, 1997, 144(2): 524-532.
[6] WANG Z Y, LEE J Z, XIN H L, et al. Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries[J]. Journal of Power Sources, 2016, 324: 342-348.
[7] KIM J H, XIAO C F, HAN J, et al. Interface control for high-performance all-solid-state Li thin-film batteries[J]. Ceramics International, 2020, 46(12): 19960-19965.
[8] BATES J B, DUDNEY N J, GRUZALSKI G R, et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries[J]. Journal of Power Sources, 1993, 43(1-3): 103-110.
[9] BATES J B, DUDNEY N J, NEUDECKER B, et al. Thin-film lithium and lithium-ion batteries[J]. Solid State Ionics, 2000, 135(1-4): 33-45.
[10] IRIYAMA Y, KAKO T, YADA C, et al. Charge transfer reaction at the lithium phosphorus oxynitride glass electrolyte/lithium cobalt oxide thin film interface[J]. Solid State Ionics, 2005, 176(31-34): 2371-2376.
[11] LARFAILLOU S, GUY-BOUYSSOU D, LE CRAS F, et al. Comprehensive characterization of all-solid-state thin films commercial microbatteries by electrochemical impedance spectroscopy[J]. Journal of Power Sources, 2016, 319: 139-146.
[12] KIM H S, OH Y, KANG K H, et al. Characterization of sputter-deposited LiCoO2 thin film grown on NASICON-type electrolyte for application in all-solid-state rechargeable lithium battery[J]. ACS Applied Materials Interfaces, 2017, 9(19): 16063-16070.
[13] RAIJMAKERS L H J, DANILOV D L, EICHEL R A, et al. An advanced all-solid-state Li-ion battery model[J]. Electrochimica Acta, 2020, 330: 135147.
[14] SASTRE J, CHEN X B, ARIBIA A, et al. Fast charge transfer across the Li7La3Zr2O12 solid electrolyte/LiCoO2 cathode interface enabled by an interphase-engineered all-thin-film architecture[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36196-36207.
[15] XIA Q Y, SUN S, ZAN F, et al. Amorphous LiSiON thin film electrolyte for all-solid-state thin film lithium battery[J]. Journal of Inorganic Materials, 2022, 37(2): 230-236.
[16] YUE F, XIA Q Y, GONG Y, et al. A fully coupled electrochemical-mechanical-thermal model of all-solid-state thin-film Li-ion batteries[J]. Journal of Power Sources, 2022, 539: 231614.
[17] SCHICHTEL P, Geiss M, LEICHTWEIß T, et al. On the impedance and phase transition of thin film all-solid-state batteries based on the Li4Ti5O12 system[J]. Journal of Power Sources, 2017, 360: 593-604.
[18] LIU Y, BAI Y, JAEGERMANN W, et al. Impedance modeling of solid-state electrolytes: Influence of the contacted space charge layer[J]. ACS Applied Materials & Interfaces, 2021, 13(4): 5895-5906.
[19] HAN F D, WESTOVER A S, YUE J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy, 2019, 4(3): 187-196.
[20] LU Y, ZHAO C Z, YUAN H, et al. Critical current density in solid-state lithium metal batteries: Mechanism, influences, and strategies[J]. Advanced Functional Materials, 2021, 31(18): 2009925.
[21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电动汽车用锂离子动力蓄电池包和系统第1部分高功率应用测试规程: GB/T 31467.1—2015[S].北京: 中国标准出版社, 2015. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Lithium-ion traction battery pack and system for electric vehicles—Part 1Test specification for high power applications: GB/T 31467.1-2015[S]. Beijing: Standards Press of China, 2015.(in Chinese)
[22] ZHANG Y L, WANG Q, LIAW B, et al. A quantitative failure analysis on capacity fade in rechargeable lithium metal cells[J]. Journal of the Electrochemical Society, 2020, 167(9): 090502.
[23] BISQUERT J, COMPTE A. Theory of the electrochemical impedance of anomalous diffusion[J]. Journal of Electroanalytical Chemistry, 2001, 499(1): 112-120.
[24] HUANG J, ZHANG J B. Theory of impedance response of porous electrodes: Simplifications, inhomogeneities, non-stationarities and applications[J]. Journal of the Electrochemical Society, 2016, 163(9): A1983-A2000.
[25] HUANG J. Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond[J]. Electrochimica Acta, 2018, 281: 170-188.
[26] DOKKO K, MOHAMEDI M, FUJITA Y, et al. Kinetic characterization of single particles of LiCoO2 by AC impedance and potential step methods[J]. Journal of the Electrochemical Society, 2001, 148(5): A422-A426.
[27] FALLAHZADEH R, FARHADIAN N. Molecular dynamics simulation of lithium ion diffusion in LiCoO2 cathode material[J]. Solid State Ionics, 2015, 280: 10-17.
[28] LEE E, LEE K R, LEE B J. An interatomic potential for the Li-Co-O ternary system[J]. Computational Materials Science, 2018, 142: 47-58.
[1] 余志健, 杨倩雯, 王译晨, 杨东, 朱民. 燃烧振荡声学抑制器的机理分析与设计优化[J]. 清华大学学报(自然科学版), 2023, 63(4): 487-504.
[2] 刘威, 谢小荣, 姜齐荣, 毛航银. 变流式新能源机组的次/超同步振荡、小扰动同步稳定性与阻抗模型分析[J]. 清华大学学报(自然科学版), 2022, 62(10): 1706-1714.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn