Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (9): 1483-1492    DOI: 10.16511/j.cnki.qhdxxb.2023.21.001
  环境科学与工程 本期目录 | 过刊浏览 | 高级检索 |
面向不同需求的未来社区海绵源头设施布局方法
张潇月, 李玥, 王晨杨, 陈正侠, 贾海峰
清华大学 环境学院, 北京 100084
Layout methods of sponge source facilities for future community based on different needs
ZHANG Xiaoyue, LI Yue, WANG Chenyang, CHEN Zhengxia, JIA Haifeng
School of Environment, Tsinghua University, Beijing 100084, China
全文: PDF(5013 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 未来社区是一种追求可持续发展目标的生态低碳新型城市功能单元。 为了探究融合海绵城市建设理念的未来社区海绵源头设施布局方法, 提出采用容积法、 模型法及多目标优化法以满足不同数据和技术需求, 构建未来社区海绵源头设施布局多方法体系。 选择一典型以未来社区为目标的待建社区为例开展研究。 结果表明, 容积法数据及技术需求低, 可生成满足研究区年径流总量控制率的海绵源头设施布局方案; 然而, 如需进一步评估方案的减污降碳效果则需借助模型法, 但模型构建和运行需进一步获得研究区管网及降雨等数据。 为了实现未来社区建设的多目标综合环境效益和成本效益, 则可采用多目标优化法, 该方法需运用智能优化算法和模型耦合技术。 不同方法下得到的未来社区减污降碳效果表明, 容积法方案峰值流量由传统方案(无源头设施)5.65 m3·s-1降至2.17 m3·s-1, 典型年平均径流总量控制率由51.87%提高到79.43%, 年均降碳量增加284.87 t·a-1(假设传统方案降碳量为0), 污染物峰值浓度降低21.69%~30.52%, 显著提高了减污降碳效果。 相比容积法方案, 耦合NSGA-II和SWMM的多目标优化方案总建设成本减少了18.67%, 且径流流量峰值削减率、 浓度峰值削减率、 雨水回用率和年均降碳量分别提高21.20%、 6.32%~16.67%、 1.17%~2.65%和29. 36 t·a-1。 总体而言, 容积法简单易操作, 可满足未来社区海绵源头设施布局要求和年径流总量控制率目标; 多目标优化法数据和技术需求较高, 但可实现最佳综合环境效益及成本效益。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张潇月
李玥
王晨杨
陈正侠
贾海峰
关键词 未来社区海绵城市减污降碳绿色基础设施容积法模型法多目标优化法    
Abstract:[Objective] Future community is a novel type of ecological low-carbon urban functional unit that follows sustainable development objectives and the sponge city construction concept. Some studies have employed different methods targeting data accessibility and technical requirements to explore future community planning. However, a systematic method is still lacking for different planning and design stages, additions to which will support the planning layout of sponge source facilities for future communities.[Methods] To integrate the future community planning methods incorporating the sponge city construction concept, a multimethod framework for the sponge source facility layout of the future community was constructed, adopting the volume capture ratio (VCR) method, the modeling method, and the multiobjective optimization method for different data and technical requirements. The results from the case study of a community to be transformed into a future community in a rainy southern Chinese city showed that the VCR method demonstrated the lowest data and technical requirements, which could generate a layout scheme meeting the volume capture ratio of annual rainfall (VCRAR). This method is particularly suitable for the early stages of the sponge source facility layout planning for limited data. However, a model was required for further assessments of pollution and carbon reduction, along with additional relevant data (drainage network, rainfall data, etc.). To achieve multiobjective comprehensive environmental benefits and the cost-effectiveness of future communities, a multiobjective optimization method could be incorporated. Nevertheless, intelligent optimization algorithms and model coupling technology were indispensable to achieve multiobjective optimization.[Results] The runoff management efficiencies of different schemes employed by these methods indicated that the sponge source facility layout scheme by the VCR method achieved approximately 80% VCRAR. The VCR-based scheme was further evaluated by the Storm Water Management Model (SWMM), demonstrating a decline in the runoff peak flow from 5.65 m3·s-1 in the traditional scheme (without sponge facilities) to 2.17 m3·s-1, and the VCRAR changed from 51.87% in the traditional scheme to 79.43%. A 21.69%—30.52% reduction in the peak concentrations of total suspended solids, nitrogen, phosphorus, and chemical oxygen demand and a 284.87 t·y-1 carbon reduction over the traditional scheme were recorded, exhibiting significant pollution and carbon reduction improvement of the VCR-based scheme. The multiobjective optimization scheme based on the multiobjective optimization method by coupling SWMM and NSGA-II aimed for the best cost-effectiveness, which resulted in a 3.29% and a 1.51% decrease in the green roof and the sunken greenbelt area, respectively, and a 2.13% increase in the permeable pavement area, as well as an 18.67% reduction in the cost compared to the VCR-based scheme. Thus, the increased area of permeable pavement made it the preferred choice. Moreover, the multiobjective optimization scheme displayed superior peak flow reduction (21.20% decrease), peak concentration reduction of different pollutants (6.32%-16.67% decrease), rainwater reuse rate (1.17%-2.65% increase), and carbon reduction (7.91%-12.66% increase) over the VCR-based scheme. However, in the multiobjective optimization scheme, the increase in the permeable pavement area increased the carbon emission by 178.40 t as compared to the VCR-based scheme.[Conclusions] Utilizing the carbon emission indicator as a control objective in the optimization process is necessary for future studies. Nonetheless, the multiobjective optimization scheme achieved higher net carbon reduction benefits due to higher annual reductions and needed about seven years to achieve carbon emission recovery. Briefly, the VCR method has a simple and easy operation, and it can meet the requirements of future community planning and runoff control objectives, while the multiobjective optimization method can achieve the best environmental benefits and cost-effectiveness.
Key wordsfuture community    sponge city    pollution and carbon reduction    green infrastructure    volume capture ratio method    modeling method    multiobjective optimization method
收稿日期: 2022-10-20      出版日期: 2023-08-19
基金资助:国家自然科学基金重大项目(41890823); 国家自然科学基金面上项目(52070112); 中国博士后科学基金资助项目(2022M711799)
通讯作者: 贾海峰,教授,E-mail:jhf@tsinghua.edu.cn      E-mail: jhf@tsinghua.edu.cn
作者简介: 张潇月(1992-),女,博士后。
引用本文:   
张潇月, 李玥, 王晨杨, 陈正侠, 贾海峰. 面向不同需求的未来社区海绵源头设施布局方法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1483-1492.
ZHANG Xiaoyue, LI Yue, WANG Chenyang, CHEN Zhengxia, JIA Haifeng. Layout methods of sponge source facilities for future community based on different needs. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1483-1492.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.21.001  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I9/1483
  
  
  
  
  
  
  
  
  
  
  
  
[1] 印定坤, 陈正侠, 李骐安, 等. 降雨特征对多雨城市海绵改造小区径流控制效果的影响[J]. 清华大学学报(自然科学版), 2021, 61(1): 50-56. YIN D K, CHEN Z X, LI Q A, et al. Influence of rainfall characteristics on runoff control of a sponge reconstructed community in a rainy city[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(1): 50-56. (in Chineses)
[2] FERRANS P, TORRES M N, TEMPRANO J, et al. Sustainable urban drainage system (SUDS) modeling supporting decision-making: A systematic quantitative review[J]. Science of the Total Environment, 2022, 806: 150447.
[3] YUAN Y W, ZHANG Q, CHEN S M, et al. Evaluation of comprehensive benefits of sponge cities using meta-analysis in different geographical environments in China[J]. Science of the Total Environment, 2022, 836: 155755.
[4] LI J K, YAO Y T, MA M H, et al. A multi-index evaluation system for identifying the optimal configuration of LID facilities in the newly built and built-up urban areas[J]. Water Resources Management, 2021, 35(7): 2129-2147.
[5] LUAN B, YIN R X, XU P, et al. Evaluating green stormwater infrastructure strategies efficiencies in a rapidly urbanizing catchment using SWMM-based TOPSIS[J]. Journal of Cleaner Production, 2019, 223: 680-691.
[6] TANG S J, JIANG J P, SHAMSELDIN A Y, et al. Comprehensive optimization framework for low impact development facility layout design with cost-benefit analysis: A case study in Shenzhen City, China[J]. ACS ES&T Water, 2022, 2(1): 63-74.
[7] ECKART K, MCPHEE Z, BOLISETTI T. Multiobjective optimization of low impact development stormwater controls[J]. Journal of Hydrology, 2018, 562: 564-576.
[8] CHOI C, BERRY P, SMITH A. The climate benefits, co-benefits, and trade-offs of green infrastructure: A systematic literature review[J]. Journal of Environmental Management, 2021, 291: 112583.
[9] SHE L, WEI M, YOU X Y. Multi-objective layout optimization for sponge city by annealing algorithm and its environmental benefits analysis[J]. Sustainable Cities and Society, 2021, 66: 102706.
[10] SU X, SHAO W W, LIU J H, et al. How does sponge city construction affect carbon emission from integrated urban drainage system?[J]. Journal of Cleaner Production, 2022, 363: 132595.
[11] LIU J H, WANG J, DING X Y, et al. Assessing the mitigation of greenhouse gas emissions from a green infrastructure-based urban drainage system[J]. Applied Energy, 2020, 278: 115686.
[12] 陈碧宜. 基于气候变化的低影响开发设施径流量和碳排放控制研究——以广州市天河智慧城为例[D]. 广州: 广州大学, 2022. CHEN B Y. Runoff volume and carbon emission control of the low impact development facilities based on climate change: A case study of tianhe intelligence business district, Guangzhou[D]. Guangzhou: Guangzhou Univrsity, 2022. (in Chinese)
[13] 李晨璐, 郑涛, 彭开铭, 等. 基于全生命周期法的海绵城市雨水系统碳排放研究[J]. 环境与可持续发展2019, 44(1): 132-137. LI C L, ZHENG T, PENG K M, et al. Study on carbon emission of sponge city stormwater system based on life cycle assessment[J]. Environment and Sustainable Development, 2019, 44(1): 132-137. (in Chinese)
[14] MOORE T L C, HUNT W F. Predicting the carbon footprint of urban stormwater infrastructure[J]. Ecological Engineering, 2013, 58: 44-51.
[15] ZHU Y F, XU C Q, YIN D K, et al. Environmental and economic cost-benefit comparison of sponge city construction in different urban functional regions[J]. Journal of Environmental Management, 2022, 304: 114230.
[16] LI Q, WANG F, YU Y, et al. Comprehensive performance evaluation of LID practices for the sponge city construction: A case study in Guangxi, China[J]. Journal of Environmental Management, 2019, 231: 10-20.
[17] 吴允红, 李俊奇, 张哲, 等. 渗排型透水铺装运行维护研究进展[J]. 给水排水, 2022, 48(8): 151-159. WU Y H, LI J Q, ZHANG Z, et al. Operation and maintenance of permeable pavement with underdrainage: A review[J]. Water & Wastewater Engineering, 2022, 48(8): 151-159. (in Chinese)
[18] VENKATARAMANAN V, LOPEZ D, MCCUSKEY D J, et al. Knowledge, attitudes, intentions, and behavior related to green infrastructure for flood management: A systematic literature review[J]. Science of the Total Environment, 2020, 720: 137606.
[19] FAN G D, LIN R S, WEI Z Q, et al. Effects of low impact development on the stormwater runoff and pollution control[J]. Science of the Total Environment, 2022, 805: 150404.
[1] 沈阳, 徐苑昕, 吴璟. 海绵城市建设对住房价格影响的定量分析——以四川省遂宁市为例[J]. 清华大学学报(自然科学版), 2021, 61(6): 573-581.
[2] 印定坤,陈正侠,李骐安,贾海峰,刘正权,沈雷. 降雨特征对多雨城市海绵改造小区径流控制效果的影响[J]. 清华大学学报(自然科学版), 2021, 61(1): 50-56.
[3] 吕恒, 倪广恒, 曹雪健, 田富强. 道路在城市排涝中的作用及影响因素定量评价[J]. 清华大学学报(自然科学版), 2018, 58(10): 906-913.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn