Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (10): 1512-1519    DOI: 10.16511/j.cnki.qhdxxb.2023.22.041
  公共安全 本期目录 | 过刊浏览 | 高级检索 |
不同侧壁高度油池火实验分析与模型建立
朱华诚1, 胡振启1, 赵至善1, 陈诚1, 赵金龙1, 杨锐2
1. 中国矿业大学(北京) 应急管理与安全工程学院, 北京 100083;
2. 清华大学 工程物理系, 北京 100084
Experimental analyses and modeling of pool fires with different ullage heights
ZHU Huacheng1, HU Zhenqi1, ZHAO Zhishan1, CHEN Cheng1, ZHAO Jinlong1, YANG Rui2
1. School of Emergency Management and Safety Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China;
2. Department of Engineering Physics, Tsinghua University, Beijing 100084, China
全文: PDF(4352 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 近年来中国兴建了很多浮顶油品储罐。当浮顶储罐内部液位较低时,罐体内部易积聚蒸气,火灾风险增大。一旦发生火灾易形成侧壁约束下的油池火,给油品储运安全造成严重威胁。该文采用石英玻璃材质的油盘,开展了不同侧壁高度(油盘侧壁上边缘到油品表面的垂直距离,h=3~50 cm)的正庚烷油池火实验,研究了侧壁高度对灾变过程和关键火灾参数(燃烧速率、火焰高度)的影响。实验结果表明:侧壁高度对整个燃烧过程影响明显,尤其是对初始阶段和稳定阶段。对于初始阶段,低侧壁油池火燃烧速率快速增加,但高侧壁油池火燃烧速率呈现先快速增加随后逐渐减小的趋势,这主要是由于火焰根部不断抬升进而远离油品表面造成的。对于稳定阶段,随侧壁高度的增加,燃烧速率呈现先减小后增大随后再减小的趋势。其中的先减小后增大趋势是由于火焰根部逐渐从油盘外进入油盘内造成的,而随后的再减小趋势主要是由于火焰根部不断抬升造成的。基于高侧壁稳定阶段的火焰形态,可将火焰划分为外部火焰和内部火焰。随侧壁高度的增加,外部火焰高度逐渐降低,内部火焰高度逐渐增加。基于量纲归一化分析,考虑侧壁高度和空气卷吸因素,引入油盘特征直径,建立了不同侧壁高度下的无量纲内部火焰高度模型。该研究结果可增强对不同侧壁高度油池火火焰行为的理解,为储罐区浮顶储罐火灾的定量风险评估提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱华诚
胡振启
赵至善
陈诚
赵金龙
杨锐
关键词 油池火侧壁高度燃烧速率火焰高度空气卷吸    
Abstract:[Objective] In recent years, floating-roof tanks have been widely used for liquid fuel storage in China. However, these tanks suffer from a considerable fire risk owing to the accumulation of highly flammable fuel vapors when the liquid fuel level is low. The risk of pool fires, confined by ullage heights, seriously threatens fuel storage and transportation. Furthermore, the flame characteristics, including burning rates and flame heights, are notably affected by ullage heights. However, the research on pool fires with different ullage heights is few. Hence, this study aims to experimentally study the pool fires for different ullage heights and analyze the key parameters (burning rate and flame height). Additionally, a correlation based on dimensionless analysis is proposed to predict the down-reaching flame height. [Methods] This study investigates the effect of ullage heights on pool fires. A series of pool fire experiments were conducted using a transparent quartz glass tray and heptane fuel. Different ullage heights (ranging from 3 cm to 50 cm, measured as the vertical distance from the tank top to the liquid fuel surface) were considered. The burning rate was measured using a Sartorius balance and video cameras were installed to record the burning process and flame heights. Flame heights were calculated by converting the flame videos into binary images. Subsequently, the key parameters were analyzed. [Results] The experimental results reveal the following: (1) The ullage height considerably affects the burning process, particularly at the initial and steady stages. At the initial stage, the burning rate sharply increases for cases with a low ullage height, while a burning rate decrease trend is observed after the rapid increase for cases with a large ullage height. This is mainly caused by the continuous uplift of the flame base, moving away from the fuel surface. (2) At the steady stage, the burning rate first decreases and then increases, followed by a final decrease with the increase of the ullage height. The increase in the distance between the flame base and the fuel surface results in this burning rate decrease trend. The burning rate increases because the flame base enters the tray. (3) Based on the flame shape in cases with a large ullage height in the steady stage, total flame height can be divided into the upper flame height outside the tray and the down-reaching flame height inside the tray. The experimental data demonstrates that the upper flame height decreases as the ullage height increases, whereas the down-reaching flame height shows an opposite trend. (4) A correlation is developed using the experimental data and dimensionless analysis to calculate down-reaching flame height with different ullage heights, in which the characteristic tray diameter is revised by considering the influence of ullage heights and air entrainment. [Conclusions] The findings of this study will contribute to the understanding of the burning behaviors of fires at different ullage heights, with practical implications in providing guidance for quantitative risk assessment in tank fires.
Key wordspool fire    ullage height    burning rate    flame height    air entrainment
收稿日期: 2023-05-08      出版日期: 2023-09-01
基金资助:应急管理部消防救援局重点研发项目(2022XFZD04);中央高校基本科研业务费项目(2020QN05)
通讯作者: 赵金龙,副教授,E-mail:15210567787@163.com     E-mail: 15210567787@163.com
作者简介: 朱华诚(2001-),男,本科生。
引用本文:   
朱华诚, 胡振启, 赵至善, 陈诚, 赵金龙, 杨锐. 不同侧壁高度油池火实验分析与模型建立[J]. 清华大学学报(自然科学版), 2023, 63(10): 1512-1519.
ZHU Huacheng, HU Zhenqi, ZHAO Zhishan, CHEN Cheng, ZHAO Jinlong, YANG Rui. Experimental analyses and modeling of pool fires with different ullage heights. Journal of Tsinghua University(Science and Technology), 2023, 63(10): 1512-1519.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.22.041  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I10/1512
  
  
  
  
  
  
  
  
  
  
  
[1] WACHTMEISTER H, HENKE P, HÖÖK M. Oil projections in retrospect:Revisions, accuracy and current uncertainty[J]. Applied Energy, 2018, 220:138-153.
[2] POUYAKIAN M, JAFARI M J, LAAL F, et al. A comprehensive approach to analyze the risk of floating roof storage tanks[J]. Process Safety and Environmental Protection, 2021, 146:811-836.
[3] 周锋,阮桢.石油化工储罐火灾事故统计与分析[C]//2016中国消防协会科学技术年会论文集.南京:中国消防协会, 2016:21-23. ZHOU F, RUAN Z. Statistics and analysis of petrochemical tank fire accidents[C]//Proceedings of 2016 Science and Technology Annual Conference of China Fire Protection Association. Nanjing:China Fire Protection Association, 2016:21-23.(in Chinese)
[4] 河北省应急管理厅.沧州市渤海新区南大港东兴工业区鼎睿石化有限公司"5·31 "火灾事故调查报告[EB/OL].(2021-09-27)[2023-02-05] . https://www.sohu.com/a/492490845_121106832. Department of Emergency Management of Hebei Province. Investigation report on" May 31"fire accident of Dingrui Petrochemical Co., Ltd., Bohai New District, Cangzhou[EB/OL].(2021-09-27)[2023-02-05] . https://www.sohu.com/a/492490845_121106832.(in Chinese)
[5] BLINOV V I, KHUDIAKOV G N. Diffusion burning of liquids:NTIS No. AD296762[R]. Moscow:Academy of Sciences, 1961:105-108.
[6] HESKESTAD G. Peak gas velocities and flame heights of buoyancy-controlled turbulent diffusion flames[J]. Symposium (International) on Combustion, 1981, 18(1):951-960.
[7] 庄磊.航空煤油池火热辐射特性及热传递研究[D].合肥:中国科学技术大学, 2008. ZHUANG L. Study on thermal radiation character and heat transfer of aviation fuel pool fires[D]. Hefei:University of Science and Technology of China, 2008.(in Chinese)
[8] LEI J, DENG W Y, MAO S H, et al. Flame geometric characteristics of large-scale pool fires under controlled wind conditions[J]. Proceedings of the Combustion Institute, 2023, 39(3):4021-4029.
[9] KOLSTAD E A, FRETTE V, KRAUSE U, et al. Lip-height effect in diffusive pool fires[J]. Fire Safety Journal, 2021, 125:103428.
[10] HE P X, XU R Z, LIU Q, et al. The evolution of flame length for the oil tank fire with different top cover widths and lip heights[J]. Journal of Loss Prevention in the Process Industries, 2020, 64:104070.
[11] SHI X C, SAHU A K, NAIR S, et al. Effect of ullage on burning behavior of small-scale pool fires in a cavity[J]. Proceedings of the Combustion Institute, 2017, 36(2):3113-3120.
[12] KUANG C, HU L H, ZHANG X L, et al. An experimental study on the burning rates of n-heptane pool fires with various lip heights in cross flow[J]. Combustion and Flame, 2019, 201:93-103.
[13] 党晓贝,何亚平,汪箭.不同边沿高度油池火燃烧行为的实验和数值模拟研究[J].火灾科学, 2018, 27(4):213-221. DANG X B, HE Y P, WANG J. Experimental and numerical study on burning behavior of pool fire with different lip heights[J]. Fire Safety Science, 2018, 27(4):213-221.(in Chinese)
[14] 党晓贝.不同边沿高度条件下正庚烷油池火燃烧特性研究[D].合肥:中国科学技术大学, 2018. DANG X B. Study on burning behaviour of heptane pool fire with various lip heights[D]. Hefei:University of Science and Technology of China, 2018.(in Chinese)
[15] LIU C X, DING L, JANGI M, et al. Effects of ullage height on heat feedback and combustion emission mechanisms of heptane pool fires[J]. Fire Safety Journal, 2021, 124:103401.
[16] ZHAO J L, ZHANG X, ZHANG J P, et al. Experimental study on the flame length and burning behaviors of pool fires with different ullage heights[J]. Energy, 2022, 246:123397.
[17] ZUKOSKI E E, CETEGEN B M, KUBOTA T. Visible structure of buoyant diffusion flames[J]. Symposium (International) on Combustion, 1985, 20(1):361-366.
[18] YAO Y Z, LI Y Z, INGASON H, et al. Theoretical and numerical study on influence of wind on mass loss rates of heptane pool fires at different scales[J]. Fire Safety Journal, 2021, 120:103048.
[19] ZHAO J L, HUANG H, JOMAAS G, et al. Experimental study of the burning behaviors of thin-layer pool fires[J]. Combustion and Flame, 2018, 193:327-334.
[20] NASR A, SUARD S, EL-RABII H, et al. Heat feedback to the fuel surface of a pool fire in an enclosure[J]. Fire Safety Journal, 2013, 60:56-63.
[21] DRYSDALE D. An introduction to fire dynamics[M]. 3rd ed. Chichester:John Wiley&Sons, 2011.
[22] TU R, ZENG Y, FANG J, et al. Low air pressure effects on burning rates of ethanol and n-heptane pool fires under various feedback mechanisms of heat[J]. Applied Thermal Engineering, 2016, 99:545-549.
[23] ZHAO J L, HUANG H, LI Y T, et al. Experimental and modeling study of the behavior of a large-scale spill fire on a water layer[J]. Journal of Loss Prevention in the Process Industries, 2016, 43:514-520.
[24] HAMINS A, KASHIWAGI T, BURCH R. Characteristics of pool fire burning[C]//American Resistance of Industrial Fluids. Indianapolis, 1995.
[25] GE F L, SIMEONI A, JI J, et al. Experimental study on the evolution of heat feedback in multiple pool fires[J]. Proceedings of the Combustion Institute, 2021, 38(3):4887-4895.
[26] ARTEMENKO E S, BLINOV V I. Burning of liquids in vessels with change of level[J]. Combustion Explosion and Shock Waves, 1968, 4:39-42.
[27] BABRAUSKAS V. Estimating large pool fire burning rates[J]. Fire Technology, 1983, 19(4):251-261.
[28] LIU C X, DING L, JANGI M, et al. Experimental study of the effect of ullage height on flame characteristics of pool fires[J]. Combustion and Flame, 2020, 216:245-255.
[1] 杨慎林, 普方, 李满厚, 王昌建. 小尺度乳化柴油池火的沸腾燃烧特性实验研究[J]. 清华大学学报(自然科学版), 2022, 62(6): 1031-1036.
[2] 李聪, 马勋, 杨锐, 张辉. 基于形状和纹理特征的正庚烷环形油池火特性[J]. 清华大学学报(自然科学版), 2021, 61(6): 502-508.
[3] 冯瑞, 田润和, 陈科位, 叶君健, 张辉. 低气压环境对固体燃烧特性影响的实验研究[J]. 清华大学学报(自然科学版), 2019, 59(2): 111-121.
[4] 方朝纲, 宋蔷, 仲蕾, 熊刚, 姚强. 重力场作用下三种不同燃料液滴在垂直电场中的燃烧特性[J]. 清华大学学报(自然科学版), 2014, 54(1): 97-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn