Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (10): 1658-1671    DOI: 10.16511/j.cnki.qhdxxb.2022.26.054
  航空航天 本期目录 | 过刊浏览 | 高级检索 |
基于多通道流场与热场控制的C/C复合材料制备与工艺优化
黄晓青1, 王鹏飞2, 张松3, 张辉1
1. 清华大学 工程物理系, 北京 100084;
2. 中国科学院 上海硅酸盐研究所, 上海 200050;
3. 清华大学 航空发动机研究所, 北京 100084
Preparation and process optimization of C/C composites based on the multi-channel flow field and thermal field control
HUANG Xiaoqing1, WANG Pengfei2, ZHANG Song3, ZHANG Hui1
1. Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China;
3. Institute for Aero Engine, Tsinghua University, Beijing 100084, China
全文: PDF(13159 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 纤维增强复合材料以耐高温、高比强度等优点在航空航天领域得到广泛应用,为有效提高多孔复合材料沉积过程的可控性与均匀性,该研究提出一种基于双温区-双通道结构的双工艺化学气相渗透/沉积(chemical vapor infiltration/deposition,CVI/CVD)系统。基于装备设计-建造-理论-制备-优化的一体化研究思路,对该系统制备碳纤维增强碳基复合材料(C/C复合材料)进行工艺设计与优化研究。通过建立流动、传热和物质传递反应模型,分析了温度、速度、浓度对致密化过程的影响,其中降低沉积温度能够提高厚度方向的沉积均匀性,通过改变空间温度梯度能够实现沉积位置的控制,初始速度、浓度的匹配能够提高致密化效率。利用双工艺CVI/CVD系统对多孔复合材料进行两步法沉积模拟,验证了C/C复合材料沉积样件均匀性控制与工艺优化的可行性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄晓青
王鹏飞
张松
张辉
关键词 化学气相渗透化学气相沉积C/C复合材料两步法    
Abstract:[WTBZ] [Objective] Fiber-reinforced composite materials are widely used in aerospace due to high-temperature resistance and high specific strength. The popular chemical vapor infiltration (CVI) method slowly penetrates the porous preform through a gas source and decomposes the carbon source gas into pyrolytic carbon for deposition. This method offers the advantages of less fiber damage and designability of special-shaped components; however, the CVI preparation cycle is long, and the pore blockage on the fiber preform surface makes the densification of the porous preform uneven. To effectively improve the controllability and uniformity of the deposition of porous composite materials, a dual-process chemical vapor infiltration/deposition (CVI/CVD) system bases on a dual-temperature zone-dual-channel structure is proposed in this study, with strong designability and manufacturability and an improved CVI. [Methods] Bases on the influence of gas flow direction and temperature on the deposition process, CVD is introduced to combine the two parameters, thus improving the densification uniformity while shortening the fabrication cycle. Since the complex transport and reaction of carbon source and carrier gases is a multivariate multi-coupling process with a great impact on the deposition efficiency and uniformity, numerous modeling and experimental studies are required. In this paper, the process design and system optimization are conducted to generate carbon/carbon composites (C/C composite) bases on the integrated research idea of equipment design-build- theory-preparation-optimization. By establishing flow, heat transfer, and mass transfer reaction models, the effects of temperature, velocity, and concentration on the densification process are analyzed. The two-step deposition simulation of the porous composites is conducted via the dual-process CVI/CVD system. [Results] The results showed that reducing the deposition temperature could reduce the deposition rate, avoid saturated adsorption on the preform surface before complete deposition, and improve the deposition uniformity in the thickness direction. Increasing the temperature to increase the reaction rate could easily lead to surface deposition, causing the surface pores to close and block, thus hindering further deposition. The deposition position could be controlled by changing the spatial temperature gradient. For the same temperature gradient, the higher the control temperature, the larger the main deposition area; for a higher control temperature, the main deposition area decreased with the increasing temperature gradient. When the time for the reaction carbon source gas and the carrier gas to be transported to the deposition area was equal to that for the deposition reaction to consume the atmosphere source, the initial velocity matched the concentration, improving the densification efficiency. The two-step deposition simulation results showed that the porous preforms achieved a relatively uniform density in horizontal and vertical directions after the two-step CVI/CVD. [Conclusions] By combining the two processes, a dual-temperature zone-dual-channel CVI/CVD system is constructed. A mathematical and a physical model of densification are established, based on the basic theories of chemical reaction kinetics and heat and mass transfer to perform the variable parameter simulation experiment. The flow and thermal field control process optimization design is performed for the prepared C/C composite material, verifying the feasibility of the uniformity control and the process optimization of the C/C composite material deposition sample and providing significant guidance to conduct the future experiments.
Key wordschemical vapor infiltration    chemical vapor deposition    carbon/carbon composite    two-step method
收稿日期: 2022-05-26      出版日期: 2023-09-01
基金资助:国家重点研发计划项目(2020YFA0714500);国家自然科学基金资助项目(72174099);北京高校高精尖学科(安全科学与工程)建设项目(100361004)
通讯作者: 张松,助理研究员,E-mail:zsthu@tsinghua.edu.cn     E-mail: zsthu@tsinghua.edu.cn
作者简介: 黄晓青(1996-),女,博士研究生。
引用本文:   
黄晓青, 王鹏飞, 张松, 张辉. 基于多通道流场与热场控制的C/C复合材料制备与工艺优化[J]. 清华大学学报(自然科学版), 2023, 63(10): 1658-1671.
HUANG Xiaoqing, WANG Pengfei, ZHANG Song, ZHANG Hui. Preparation and process optimization of C/C composites based on the multi-channel flow field and thermal field control. Journal of Tsinghua University(Science and Technology), 2023, 63(10): 1658-1671.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2022.26.054  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I10/1658
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] SUN C, LI H J, FU Q G, et al. Double SiC coating on carbon/carbon composites against oxidation by a two-step method[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(7):2107-2112.
[2] 何子博,李贺军,史小红,等. LPCVD法制备SiC-MoSi2涂层的形貌及沉积机理研究[J].材料导报, 2012, 26(20):1-5. HE Z B, LI H J, SHI X H, et al. Study on the morphology and deposition mechanism of SiC-MoSi2 coating deposited by LPCVD[J]. Materials Review, 2012, 26(20):1-5.(in Chinese)
[3] 张守阳,李贺军,孙军. LTCVI工艺中的致密化效率研究[J].材料工程, 2001(9):44-46. ZHANG S Y, LI H J, SUN J. An investigation on the densification efficiency of LTCVI[J]. Journal of Materials Engineering, 2001(9):44-46.(in Chinese)
[4] HE Z, LI H, SHI X, et al. Formation mechanism and oxidation behavior of MoSi2-SiC protective coating prepared by chemical vapor infiltration/reaction[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(7):2100-2106.
[5] 解静,李克智,付前刚,等.聚合物浸渍裂解法制备C/C-ZrC-SiC-ZrB2复合材料及其性能研究[J].无机材料学报, 2013, 28(6):605-610. XIE J, LI K Z, FU Q G, et al. Preparation and properties of C/C-ZrC-SiC-ZrB2 composites via polymer infiltration and pyrolysis[J]. Journal of Inorganic Materials, 2013, 28(6):605-610.(in Chinese)
[6] 李伟,张守阳,李贺军,等.正丁醇等温CVI工艺制备C/C复合材料[J].固体火箭技术, 2010, 33(6):694-697. LI W, ZHANG S Y, LI H J, et al. Preparation of C/C composites using n-butyl alcohol[J]. Journal of Solid Rocket Technology, 2010, 33(6):694-697.(in Chinese)
[7] VAIDYARAMAN S, LACKEY W J, AGRAWAL P K, et al. Carbon/carbon processing by forced flow-thermal gradient chemical vapor infiltration using propylene[J]. Carbon, 1996, 34(3):347-362.
[8] VAIDYARAMAN S, JACK LACKEY W, FREEMAN G B, et al. Fabrication of carbon-carbon composites by forced flow-thermal gradient chemical vapor infiltration[J]. Journal of Materials Research, 1995, 10(6):1469-1477.
[9] BESMANN T M, LOWDEN R A, STINTON D P, et al. A method for rapid chemical vapor infiltration of ceramic composites[J]. Journal de Physique Colloques, 1989, 50(C5):C5-229-C5-239.
[10] BESMANN T M, MCLAUGHLIN J C, LIN H. Fabrication of ceramic composites:Forced CVI[J]. Journal of Nuclear Materials, 1995, 219:31-35.
[11] XIE J, LI K Z, LI H J, et al. Ablation behavior and mechanism of C/C-ZrC-SiC composites under an oxyacetylene torch at 3000℃[J]. Ceramics International, 2013, 39(4):4171-4178.
[12] ZHANG J X, CHENG L F, LIU Y S, et al. Fabricating thick-section carbon fiber/silicon carbide composites by machining-aided chemical vapor infiltration[J]. Ceramics International, 2017, 43(16):13276-13281.
[13] WANG Y G, ZHU X J, ZHANG L T, et al. Reaction kinetics and ablation properties of C/C-ZrC composites fabricated by reactive melt infiltration[J]. Ceramics International, 2011, 37(4):1277-1283.
[14] 汤中华.用定向流动热梯度CVI工艺制备航空刹车用C/C复合材料的研究[D].长沙:中南大学, 2003. TANG Z H. Research on the fabrication of C/C composites used as aircraft disk brakes by the directional flow thermal gradient CVI process[D]. Changsha:Central South University, 2003.(in Chinese)
[15] 邹志强,汤中华,熊杰.用热梯度式CVD增密技术制造C/C复合刹车盘[J].新型炭材料, 2000, 15(2):22-27. ZOU Z Q, TANG Z H, XIONG J. The manufacturing of C/C composite brake disk by means of thermal gradient CVD densification technique[J]. New Carbon Materials, 2000, 15(2):22-27.(in Chinese)
[16] GOLECKI I, MORRIS R, NARASIMHAN D. Method of rapidly densifying a porous structure:EP-US5348774 A[P]. 1993-08-11.
[17] GOLECKI I, MORRIS R C, NARASIMHAN D, et al. Rapid densification of porous carbon-carbon composites by thermal-gradient chemical vapor infiltration[J]. Applied Physics Letters, 1995, 66(18):2334-2336.
[18] 清华大学.一种基于CVD/CVI双工艺的纤维增强复合材料沉积炉:CN212270232U[P]. 2021-01-01. TSINGHUA UNIVERSITY. Fiber reinforced composite material deposition furnace based on CVD/CVI double process:CN212270232U[P]. 2021-01-01.(in Chinese)
[19] ALBRIGHT L F. Albright's chemical engineering handbook[M]. Boca Raton:CRC Press, 2008.
[20] GEORGIADIS J G, CATTON I. An effective equation governing convective transport in porous media[J]. Journal of Heat Transfer, 1988, 110(3):635-641.
[21] ERGUN S. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952, 48(2):89-94.
[22] MOALLEMI M K, ZHANG H, KUMAR S. Numerical modeling of two-dimensional smoldering processes[J]. Combustion and Flame, 1993, 95(1-2):170-182.
[23] PANDEY A, SELVAM P, DHINDAW B K, et al. Multiscale modeling of chemical vapor infiltration process for manufacturing of carbon-carbon composite[J]. Materials Today:Proceedings, 2020, 21:1059-1063.
[24] COMSOL, INC. Heat transfer module user's guide. version:COMSOL 5.4[R/OL].(2018-09-27)[2022-10-11] . https://doc.comsol.com/5.4/doc/com.comsol.help.heat/HeatTransferModuleUsersGuide.pdf.
[25] NIELD D A, BEJAN A. Convection in porous media[M]. New York:Springer, 2013.
[26] HUA Y F, ZHANG L T, CHENG L F, et al. A two-process model for study of the effect of fiber preform structure on isothermal chemical vapor infiltration of silicon carbide matrix composites[J]. Computational Materials Science, 2009, 46(1):133-141.
[27] 魏玺.碳化硅陶瓷基复合材料ICVI过程的计算机模拟研究[D].西安:西北工业大学, 2006. WEI X. Computational simulation of ICVI process of silicon carbide ceramic matrix composites[D]. Xi'an:Northwestern Polytechnical University, 2006.(in Chinese)
[28] MCALLISTER P, WOLF E E. Modeling of chemical vapor infiltration of carbon in porous carbon substrates[J]. Carbon, 1991, 29(3):387-396.
[29] SHELDON B W, BESMANN T M. Reaction and diffusion kinetics during the initial stages of isothermal chemical vapor infiltration[J]. Journal of the American Ceramic Society, 1991, 74(12):3046-3053.
[30] STARR T L. Gas transport model for chemical vapor infiltration[J]. Journal of Materials Research, 1995, 10(9):2360-2366.
[1] 陈猛, 陈昭, 刘荣正, 刘兵, 邵友林, 唐亚平, 刘马林. 流化床-化学气相沉积颗粒包覆过程数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(10): 1645-1659.
[2] 杨旭, 程心雨, 刘荣正, 刘兵, 邵友林, 刘马林. 流化床-化学气相沉积法制备金属涂层包覆燃料颗粒[J]. 清华大学学报(自然科学版), 2021, 61(4): 361-366.
[3] 张寒, 黄泽宇, 张国君, 欧阳葆华, 吴学民, 郑丽丽. 下料方式和流量分配对D4合成SiO2的影响[J]. 清华大学学报(自然科学版), 2020, 60(3): 233-238.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn