Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (11): 1729-1740    DOI: 10.16511/j.cnki.qhdxxb.2023.26.034
  低碳交通与绿色发展 本期目录 | 过刊浏览 | 高级检索 |
考虑碳排放影响的大型机场陆侧多交通方式运力匹配模型
黄爱玲1, 王子吉安1, 张哲1, 李名杰2, 宋悦1
1. 北京交通大学 综合交通运输大数据应用技术交通运输行业重点实验室, 北京 100044;
2. 首都机场集团有限公司北京大兴国际机场 信息管理部, 北京 102600
Capacity-matching model of landside multiple transport modes for large airports considering the impact of carbon emissions
HUANG Ailing1, WANG Zijian1, ZHANG Zhe1, LI Mingjie2, SONG Yue1
1. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China;
2. Department of Information Management, Beijing Daxing International Airport of Capital Airport Group Co., Ltd., Beijing 102600, China
全文: PDF(1371 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 为解决机场枢纽旅客疏散需求与陆侧交通运力供给的精准适配难题,该文在分析运力配置与旅客出行方式选择相互作用机理的基础上,建立了面向大型机场陆侧大巴、轨道交通、出租车和私家车等多交通方式协同的运力匹配双层规划模型。首先,以出行时间、出行费用、准时度和舒适度4个指标作为特征变量构建了多交通方式选择效用函数。其次,综合考虑各交通方式的协同与服务水平特点,建立了运力匹配双层规划模型:上层模型以企业运营成本、旅客候车成本和碳排放环境成本三者之和最小化为目标,对公共交通线路的发车时间间隔、出租车到达率进行优化;下层模型基于随机用户均衡-Logit模型,在上层生成的运力配置方案的基础上,实现客流面向多交通方式的分配。再次,该文提出了一种改进的遗传算法以求解模型,通过嵌套连续平均算法与预搜索机制提高下层模型的计算效率,进而提升综合求解效率。最后,以北京大兴国际机场为例开展实证研究,结果表明:所构建的双层规划模型和算法能有效优化大型机场交通运力资源配置,从而达到优化陆侧交通结构、倡导绿色出行的目的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄爱玲
王子吉安
张哲
李名杰
宋悦
关键词 机场枢纽运力匹配双层规划改进遗传算法随机用户均衡连续平均算法    
Abstract:[Objective] In the airport ground-transport system, it is operationally important to match the evacuation requirement of passengers, and the capacity of multimodal transport vehicles is crucial. Numerous studies have investigated single-mode transport capacity allocation; however, research on multimode allocation is scarce. [Methods] To mitigate the difficulty in realizing an exact match between the evacuation demand of passengers and the capacity of multimodal transport, a bi-level programming model for multimodal transport resource allocation is proposed according to the analysis of the interaction between capacity allocation and passenger travel choice. A utility function of multiple travel modes, including airport buses, metro, taxis, and private cars, is formulated with the following four features: travel time, travel cost, punctuality, and comfort. The upper-level objective is to minimize the total enterprise-operation cost, passenger-waiting cost, and carbon emission cost for optimizing the headway of public transit and the taxi arrival rate, which is subject to the capacity of each transit mode, the range of each public-transit headway decided by fixed equipment, and the range of taxi arrival rate decided by the capacity of boarding location. Based on the output of the transport capacity allocation scheme used by the upper level, the low-level objective is to assign the passenger flow toward multiple travel modes according to a stochastic user equilibrium-logit model with a utility function. Furthermore, an improved genetic algorithm combined with method of successive algorithm (MSA) is designed to solve the proposed bi-level programming model. To improve the solving efficiency of the algorithm, a pre-search mechanism is proposed, in which the infeasible solution is filtered out using low-precision MSA to reduce the computational cost of repeatedly calling the low-level model. [Results] The Beijing Daxing International Airport was considered as a case study to illustrate the efficiency and effectiveness of the proposed bi-level programming model in optimizing transport capacity allocation in airport ground-transport centers. The transport capacity allocation scheme obtained via the proposed model reduced the average passenger-waiting time and the total carbon emission of the system by 14.08% and 6.21%, respectively, while increasing the operation cost by only 1.32%. Moreover, the optimized capacity allocation scheme resulted in the switching of 6.7% of passengers who availed taxis and private cars to buses and metro, which were more environmentally friendly. The proposed solution algorithm could efficiently solve the bi-level model. Under the pre-search mechanism, the generation time of the scheme was 217.6 s, which could meet the production demand within the acceptable time. [Conclusions] Results show that the optimized scheme obtained from the bi-level model and algorithms is considerably better than before. The proposed scheme reduces passenger-waiting time and the carbon emissions of the multimodal transport system at a negligible cost. Using the optimized scheme, the organizers of airport ground-transport centers can coordinate the capacities of landside multiple transport modes and guide passengers reasonably. This will reduce operation costs, improve airport landside traffic structure, and encourage green and low-carbon travel.
Key wordsairport hub    transportation capacity matching    bilevel programming    improved genetic algorithm    stochastic user equilibrium    method of successive algorithm
收稿日期: 2022-12-31      出版日期: 2023-10-16
基金资助:国家重点研发计划项目(2018YFB1601200);国家自然科学基金创新群体项目(71621001)
引用本文:   
黄爱玲, 王子吉安, 张哲, 李名杰, 宋悦. 考虑碳排放影响的大型机场陆侧多交通方式运力匹配模型[J]. 清华大学学报(自然科学版), 2023, 63(11): 1729-1740.
HUANG Ailing, WANG Zijian, ZHANG Zhe, LI Mingjie, SONG Yue. Capacity-matching model of landside multiple transport modes for large airports considering the impact of carbon emissions. Journal of Tsinghua University(Science and Technology), 2023, 63(11): 1729-1740.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.26.034  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I11/1729
  
  
  
  
  
  
  
  
  
  
  
  
[1] XIA W, JIANG C, WANG K, et al. Air-rail revenue sharing in a multi-airport system:Effects on traffic and social welfare[J]. Transportation Research Part B:Methodological, 2019, 121(3):304-319.
[2] CHEN X Q, ZHANG S C, LI L. Multi-model ensemble for short-term traffic flow prediction under normal and abnormal conditions[J]. IET Intelligent Transport Systems, 2019, 13(2):260-268.
[3] HE Z B. Portraying ride-hailing mobility using multi-day trip order data:A case study of Beijing, China[J]. Transportation Research Part A:Policy and Practice, 2021, 146(4):152-169.
[4] KANG L J, WU J J, SUN H J, et al. A practical model for last train rescheduling with train delay in urban railway transit networks[J]. Omega, 2015, 50(1):29-42.
[5] ZHANG C T, QI J G, GAO Y, et al. Integrated optimization of line planning and train timetabling in railway corridors with passengers'expected departure time interval[J]. Computers and Industrial Engineering, 2021, 162:107680.
[6] 查伟雄,冯涛,严利鑫.考虑车辆到达时间窗的应急公交调度优化模型[J].重庆交通大学学报(自然科学版), 2021, 40(8):57-62. ZHA W X, FENG T, YAN L X. Optimization model of emergency bus dispatching considering vehicle arrival time window[J]. Journal of Chongqing Jiaotong University (Natural Sciences), 2021, 40(8):57-62.(in Chinese)
[7] 张惠玲,余涛,敖谷昌.城际道路客运班车发车时刻表优化模型与算法[J].科学技术与工程, 2021, 21(24):10506-10511. ZHANG H L, YU T, AO G C. Optimization model and algorithm of dispatching timetable for passenger bus of intercity road[J]. Science Technology and Engineering, 2021, 21(24):10506-10511.(in Chinese)
[8] 石敏涵,吕红霞,倪少权,等.考虑要素协同的高铁列车运行图双层优化模型[J].交通运输工程与信息学报, 2022, 20(2):125-135. SHI M H, Lü H X, NI S Q, et al. Bilevel optimization model for high-speed railway train operation diagram considering multifactor cooperation[J]. Journal of Transportation Engineering and Information, 2022, 20(2):125-135.(in Chinese)
[9] WANG M D, YE Z R, XU Y R. A scheduling optimization model of coordinated operation between rail transit and bus transit[C]//Proceedings of the 17th COTA International Conference of Transportation Professionals. Shanghai, China:CICTP, 2017:2033-2044.
[10] YAP M, CATS O, KRASEMANN J T, et al. Quantification and control of disruption propagation in multi-level public transport networks[J]. International Journal of Transportation Science and Technology, 2022, 11(1):83-106.
[11] 郇宁,姚恩建,杨扬,等.电动汽车混入条件下随机动态用户均衡分配模型[J].交通运输工程学报, 2019, 19(5):150-161. HUAN N, YAO E J, YANG Y, et al. Stochastic dynamic user equilibrium assignment model considering penetration of electric vehicles[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5):150-161.(in Chinese)
[12] 邵婷婷.城市轨道交通与常规公交运营协调优化研究[D].西安:长安大学, 2019. SHAO T T. Study on coordinated operation optimization technology between urban rail system and bus system[D]. Xi'an:Chang'an University, 2019.(in Chinese)
[13] 刘立强.考虑不均匀发车间隔的高铁接运公交时刻表与车辆调度优化[D].北京:北京交通大学, 2021. LIU L Q. Feeder bus timetabling and vehicle scheduling optimization for high-speed railway station with uneven departure interval[D]. Beijing:Beijing Jiaotong University, 2021.(in Chinese)
[14] 李欣,戴章,李怀悦,等.基于连续近似模型的轨道交通与常规公交耦合优化设计[J].交通运输系统工程与信息, 2022, 22(2):206-213, 246. LI X, DAI Z, LI H Y, et al. Joint optimization of urban rail transit and local bus transit:Continuous approximation approach[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(2):206-213, 246.(in Chinese)
[15] TIDSWELL J, DOWNWARD A, THIELEN C, et al. Minimising emissions in traffic assignment with non-monotonic arc costs[J]. Transportation Research Part B:Methodological, 2021, 153(11):70-90.
[16] OU Y F, ZHENG J, NAM K M. Impacts of urban rail transit on on-road carbon emissions:A structural equation modeling approach[J]. Atmosphere, 2022, 13(11):1783.
[17] LOGAN K G, NELSON J D, HASTINGS A. Electric and hydrogen buses:Shifting from conventionally fuelled cars in the UK[J]. Transportation Research Part D, 2020, 85(8):102350.
[18] 张宏钧,王利宁,陈文颖.公路与铁路交通碳排放影响因素[J].清华大学学报(自然科学版), 2017, 57(4):443-448. ZHANG H J, WANG L N, CHEN W Y. Decomposition analysis of CO2 emissions from road and rail transport systems[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(4):443-448.(in Chinese)
[19] 杨敏,李宏伟,任怡凤,等.基于旅客异质性画像的公铁联程出行方案推荐方法[J].清华大学学报(自然科学版), 2022, 62(7):1220-1227. YANG M, LI H W, REN Y F, et al. Road-rail intermodal travel recommendations based on a passenger heterogeneity profile[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(7):1220-1227.(in Chinese)
[20] GASCON M, MARQUET O, GRÀCIA-LAVEDAN E, et al. What explains public transport use?Evidence from seven European cities[J]. Transport Policy, 2020, 99(12):362-374.
[21] ZHANG J J, LIU M M, ZHOU B. Analytical model for travel time-based BPR function with demand fluctuation and capacity degradation[J]. Mathematical Problems in Engineering, 2019, 2019:5916479.
[22] 杨扬,张天雨,朱宇婷,等.考虑建设时序和动态需求的城际公路充电设施优化布局[J].清华大学学报(自然科学版), 2022, 62(7):1163-1177, 1219. YANG Y, ZHU T Y, ZHU Y T, et al. Optimizing the deployment of charging systems on an expressway network considering the construction time sequence and the dynamic charging demand[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(7):1163-1177, 1219.(in Chinese)
[23] 魏秋月.基于蚁群优化的随机用户均衡模型研究[D].西安:长安大学, 2017. WEI Q Y. Study on stochastic user equilibrium model based on ant colony optimization[D]. Xi'an:Chang'an University, 2017.(in Chinese)
[24] SOLAYMANI S. CO2 emissions patterns in 7 top carbon emitter economies:The case of transport sector[J]. Energy, 2019, 168:989-1001.
[25] 柳林.基于碳排放的城市轨道交通环境效益货币化方法研究[J].交通标准化, 2014, 42(17):47-52. LIU L. Monetization method of environmental benefits of urban rail transit based on carbon emissions[J]. Transportation Standardization, 2014, 42(17):47-52.(in Chinese)
[26] HOANG N H, VU H L, PANDA M, et al. A linear framework for dynamic user equilibrium traffic assignment in a single origin-destination capacitated network[J]. Transportation Research Part B:Methodological, 2019, 126(8):329-352.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn