Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (11): 1750-1759    DOI: 10.16511/j.cnki.qhdxxb.2023.26.038
  低碳交通与绿色发展 本期目录 | 过刊浏览 | 高级检索 |
基于用户综合满意度的电动汽车充电诱导优化模型
毕军1,2, 杜宇佳1, 王永兴1, 左小龙1
1. 北京交通大学 交通运输学院, 北京 100044;
2. 北京交通大学 综合交通运输大数据应用技术交通运输行业重点实验室, 北京 100044
Optimization model of electric vehicle charging induction based on comprehensive satisfaction of users
BI Jun1,2, DU Yujia1, WANG Yongxing1, ZUO Xiaolong1
1. School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China;
2. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China
全文: PDF(2234 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 随着电动汽车(electric vehicle,EV)在城市交通系统不断普及,充电诱导服务成为在充电设施有限条件下解决充电问题的有效手段。在分析电动汽车用户充电满意度的基础上,提出一种综合用户绕行距离、排队时间和充电费用的电动汽车充电诱导优化模型。为准确推导用户在充电站的排队时间,充分考虑电动汽车用户充电站选择决策的相互影响,建立充电站运营状态预测模型。针对模型特点,结合免疫算法求解模型。通过面向多充电请求的优化算例验证模型的可行性和有效性,结果表明:通过求解模型可以获得用户综合满意度最大化情况下的用户最优充电站决策及其行驶路径;与绕行距离最小、排队时间最短和充电费用最少等单目标优化方案相比,所提模型的充电诱导方案的用户综合满意度分别提升了15.0%、17.8%和11.4%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毕军
杜宇佳
王永兴
左小龙
关键词 电动汽车充电诱导路径规划用户综合满意度免疫算法    
Abstract:[Objective] With the increasing prevalence of electric vehicles (EVs) in urban transportation systems, charging guidance service has become an effective means to solve the charging problem in the context of insufficient charging infrastructure. However, for optimizing the charging station selection decision-making plan of users, most existing research studies aim to minimize travel costs, which rarely considers the charging experience of users during travel and ignores the interaction of charging station selection decision-making between multiple users. To enhance the charging experience of users, based on the analysis of charging satisfaction of EV users, an EV charging guidance optimization model that integrates user satisfaction with detour distance, queuing time, and charging cost is proposed in this study. The model aims to maximize the average comprehensive satisfaction of multiple users. [Methods] To quantify the comprehensive satisfaction of users with charging stations during charging processes, evaluation indicators of detour distance, queuing time, and charging cost are constructed. To accurately deduce the queuing time of users at charging stations, this study fully considers the interaction influence of charging station selection decision-making between multiple EV users. Prediction models of the charging station operation state are established by considering several charging scenarios based on the arrival patterns of two successive users. According to the characteristics of the proposed model, an immune algorithm and the Floyd shortest path algorithm are applied to optimize the decision-making plan of charging station selections and the travel paths of multiple users, respectively. A numerical example with multiple charging requests is designed to confirm the feasibility and effectiveness of the proposed model and the algorithms. [Results] The experimental results indicated that optimal charging station selections and driving paths of multiple EVs to maximize average comprehensive satisfaction could be obtained by solving the optimization model. Compared with models with single optimization objectives, namely, minimum detour distance, shortest queuing time, and least charging cost, the average comprehensive satisfaction of EV users was increased by 15.0%, 17.8%, and 11.4%, respectively. The results also showed that average driving speed was a critical factor affecting optimal charging station selection and average comprehensive satisfaction of EV users. By analyzing the arrival patterns of two successive users at the same charging station under different charging scenarios, their queuing time after arriving at the charging station could be accurately obtained. Subsequently, optimal charging station selections by multiple users could be determined by considering the interaction that influences their selections. [Conclusions] The proposed optimization model provides multiple EV users with decision-making support for selecting charging stations by considering their interaction influences. Provided that the threshold values of each satisfaction indicator remain unchanged, the comprehensive average satisfaction obtained by the proposed model is considerably higher than that obtained by models with single objectives: minimum detour distance, shortest queuing time, and least charging cost. Thus, the proposed method can enhance the charging experience of EV users during travel.
Key wordselectric vehicle    charge induction    path planning    comprehensive satisfaction of users    immune algorithm
收稿日期: 2022-12-29      出版日期: 2023-10-16
基金资助:国家自然科学基金面上项目(72171019);北京交通大学人才基金项目(2023JBRC006)
通讯作者: 王永兴,讲师,E-mail:yx.wang@bjtu.edu.cn     E-mail: yx.wang@bjtu.edu.cn
引用本文:   
毕军, 杜宇佳, 王永兴, 左小龙. 基于用户综合满意度的电动汽车充电诱导优化模型[J]. 清华大学学报(自然科学版), 2023, 63(11): 1750-1759.
BI Jun, DU Yujia, WANG Yongxing, ZUO Xiaolong. Optimization model of electric vehicle charging induction based on comprehensive satisfaction of users. Journal of Tsinghua University(Science and Technology), 2023, 63(11): 1750-1759.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.26.038  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I11/1750
  
  
  
  
  
  
  
  
  
  
  
[1] 张书玮,冯桂璇,樊月珍,等.基于信息交互的大规模电动汽车充电路径规划[J].清华大学学报(自然科学版), 2018, 58(3):279-285. ZHANG S W, FENG G X, FAN Y Z, et al. Large-scale electric vehicle charging path planning based on information interaction[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(3):279-285.(in Chinese)
[2] 杨珍珍,高自友.数据驱动的电动汽车充电站选址方法[J].交通运输系统工程与信息, 2018, 18(5):143-150. YANG Z Z, GAO Z Y. Location method of electric vehicle charging station based on data driven[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(5):143-150.(in Chinese)
[3] 任其亮,吴丽霞,靳旭刚,等.电动汽车充电站分层递进式选址方法研究[J].重庆交通大学学报(自然科学版), 2018, 37(6):121-126. REN Q L, WU L X, JIN X G, et al. Research on site selection of electric vehicle charging stations using analytical hierarchy process[J]. Journal of Chongqing Jiaotong University (Natural Science), 2018, 37(6):121-126.(in Chinese)
[4] GUO D, LI C C, YAN W, et al. Optimal path planning method of electric vehicles considering power supply[J]. Journal of Central South University, 2022, 29(1):331-345.
[5] KESKIN M,ÇATAY B. A matheuristic method for the electric vehicle routing problem with time windows and fast chargers[J]. Computers&Operations Research, 2018, 100:172-188.
[6] ZHOU Z, LIU Z T, SU H Y, et al. Intelligent path planning strategy for electric vehicles combined with urban electrified transportation network and power grid[J]. IEEE Systems Journal, 2022, 16(2):2437-2447.
[7] LIU H M, YIN W Q, YUAN X L, et al. Reserving charging decision-making model and route plan for electric vehicles considering information of traffic and charging station[J]. Sustainability, 2018, 10(5):1324.
[8] WANG Y X, BI J, LU C R, et al. Route guidance strategies for electric vehicles by considering stochastic charging demands in a time-varying road network[J]. Energies, 2020, 13(9):2287.
[9] BASSO R, KULCSAR B, EGARDT B, et al. Energy consumption estimation integrated into the electric vehicle routing problem[J]. Transportation Research Part D:Transport and Environment, 2019, 69:141-167.
[10] WANG Y X, BI J, GUAN W, et al. Optimising route choices for the travelling and charging of battery electric vehicles by considering multiple objectives[J]. Transportation Research Part D:Transport and Environment, 2018, 64:246-261.
[11] ZHANG Y, ALIYA B, ZHOU Y T, et al. Shortest feasible paths with partial charging for battery-powered electric vehicles in smart cities[J]. Pervasive and Mobile Computing, 2018, 50:82-93.
[12] YAGCITEKIN B, UZUNOGLU M. A double-layer smart charging strategy of electric vehicles taking routing and charge scheduling into account[J]. Applied Energy, 2016, 167:407-419.
[13] 朱建东,王红蕾,李倩倩.考虑引力因素与时间满意度的充电站竞争性选址问题研究[J].数学的实践与认识, 2018, 48(24):59-65. ZHU J D, WANG H L, LI Q Q. Competitive location problem of charging station considering gravity and time satisfaction[J]. Mathematics in Practice and Theory, 2018, 48(24):59-65.(in Chinese)
[14] 崔梦麟,李广华,王芳,等.计及碳排放与变工况特性的IES多目标优化调度[J].电工电气, 2023(1):8-14, 54. CUI M L, LI G H, WANG F, et al. Multi-objective optimal scheduling of integrated energy systems in consideration of carbon emission and variable working condition[J]. Electrotechnics Electric, 2023(1):8-14, 54.(in Chinese)
[15] 高阳阳,陈双艳,余敏建,等.改进人工免疫算法的多机协同空战目标分配方法[J].西北工业大学学报, 2019, 37(2):354-360. GAO Y Y, CHEN S Y, YU M J, et al. Target allocation method of multi-aircraft cooperative air combat based on improved artificial immune algorithm[J]. Journal of Northwestern Polytechnical University, 2019, 37(2):354-360.(in Chinese)
[1] 杨扬, 张天雨, 朱宇婷, 姚恩建. 考虑建设时序和动态需求的城际公路充电设施优化布局[J]. 清华大学学报(自然科学版), 2022, 62(7): 1163-1177,1219.
[2] 仇斌, 梁宏毅, 董国华, 应梓浩, 刘亚辉. 国内外燃料电池汽车商业化示范运营评价方法对比[J]. 清华大学学报(自然科学版), 2022, 62(3): 427-437.
[3] 何启嘉, 王启明, 李佳璇, 王正佳, 王通. 基于优势竞争网络的转运机器人路径规划[J]. 清华大学学报(自然科学版), 2022, 62(11): 1751-1757.
[4] 王靖瑶, 郑华青, 郭景华, 罗禹贡. 通信延迟下智能电动汽车队列分布式自适应鲁棒控制[J]. 清华大学学报(自然科学版), 2021, 61(9): 889-897.
[5] 崔俊云, 陈迪, 袁野, 马玉亮, 王国仁. 空间众包中在线路径规划算法[J]. 清华大学学报(自然科学版), 2020, 60(8): 672-682.
[6] 田丰, 王立军, 隋立起, 曾远帆, 周星月, 田光宇. 电动汽车无同步器变速器换挡过程主动对齿控制[J]. 清华大学学报(自然科学版), 2020, 60(2): 101-108.
[7] 隋立起, 田丰, 李波, 曾远帆, 田光宇, 陈红旭. 考虑齿轮耦合振动的换挡过程非线性动力学分析[J]. 清华大学学报(自然科学版), 2020, 60(2): 109-116.
[8] 曾远帆, 陈红旭, 王立军, 田光宇, 周伟波. 无同步器的电机-变速器直连系统换挡过程建模与控制[J]. 清华大学学报(自然科学版), 2020, 60(11): 910-919.
[9] 台玉琢, 宋健, 卢正弘, 方圣楠, Nguyen Truong Sinh. 基于最优轨迹的两挡无动力中断变速器控制方法[J]. 清华大学学报(自然科学版), 2018, 58(4): 417-423.
[10] 张书玮, 冯桂璇, 樊月珍, 万爽, 罗禹贡. 基于信息交互的大规模电动汽车充电路径规划[J]. 清华大学学报(自然科学版), 2018, 58(3): 279-285.
[11] 谢海明, 林成涛, 刘涛, 田光宇, 黄勇. 增程式城市客车能量的分段跟踪优化方法[J]. 清华大学学报(自然科学版), 2017, 57(5): 476-482.
[12] NGUYEN Truong Sinh, 宋健, 方圣楠, 宋海军, 台玉琢, 李飞. 电动汽车动力保持型机械式自动两挡变速器仿真与试验[J]. 清华大学学报(自然科学版), 2017, 57(10): 1106-1113.
[13] 方圣楠, 宋健, 宋海军, 台玉琢, TRUONG Sinh Nguyen. 基于最优控制理论的电动汽车机械式自动变速器换档控制[J]. 清华大学学报(自然科学版), 2016, 56(6): 580-586.
[14] 陈红旭, 田光宇. 电机-变速器直连系统换挡过程建模及仿真[J]. 清华大学学报(自然科学版), 2016, 56(2): 144-151.
[15] 张雷, 于良耀, 宋健, 张永生, 魏文若. 电动汽车再生制动与液压制动防抱协调控制[J]. 清华大学学报(自然科学版), 2016, 56(2): 152-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn