Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (11): 1770-1780    DOI: 10.16511/j.cnki.qhdxxb.2023.26.031
  低碳交通与绿色发展 本期目录 | 过刊浏览 | 高级检索 |
城市群生态综合交通网络组团特性分析与关键节点识别
马书红1,2, 杨磊1, 陈西芳1, 朱敏1
1. 长安大学 运输工程学院, 西安 710064;
2. 长安大学 生态安全屏障区交通网设施管控及循环修复技术交通运输行业重点实验室, 西安 710064
Cluster characteristics analysis and critical node identification in ecologically integrated transport networks in urban agglomerations
MA Shuhong1,2, YANG Lei1, CHEN Xifang1, ZHU Min1
1. College of Transportation Engineering, Chang'an University, Xi'an 710064, China;
2. Key Laboratory of Transportation Industry for the Control and Recycling Technology of Transportation Network Facilities in Ecological Security Barrier Area, Chang'an University, Xi'an 710064, China
全文: PDF(17714 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 为实现城市群生态综合交通发展目标,形成交通、经济、生态环境质量一体化发展格局,以关中平原城市群为研究对象,通过熵值法对节点功能吸引、功能辐射和碳排放强度进行赋权,通过修正引力模型计算其相互联系强度;将空间结构理论与复杂网络理论相结合,构建多维空间联系网络模型;采取改进INFORMAP算法,从交通、功能和碳排放3方面分别进行区域组团划分;基于组团划分结果,构建超图网络模型,引入邻域超度、邻域影响熵指标识别城市群生态综合交通网络关键节点。结果表明:关中平原城市群功能和碳排放空间联系呈现“一极多核”的空间分布格局,西安处于核心地位,宝鸡、渭南等地级市核心区也拥有较高影响力;城市群区域组团与行政区划具有差异性,部分区县如侯马、彬州、澄城等脱离上级行政区划约束,形成了独立区域组团;西安、咸阳是城市群生态综合交通网络建设的关键节点,且城市群东部节点重要度普遍大于西部节点,因而需重点提升西安—咸阳一体化水平,优化东部节点综合交通结构,完善西部节点交通网络布局。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马书红
杨磊
陈西芳
朱敏
关键词 交通工程城市群生态综合交通网络组团关键节点    
Abstract:[Objective] To achieve the integrated development of transport, economy, and ecological environment quality, it is necessary to identify the core clusters and key nodes properly in urban agglomerations. [Methods] In this paper, the Guanzhong Plain urban agglomeration is taken as the research object, and weights are assigned to the functional attractiveness of nodes, radiance, and carbon emission intensity through the entropy method. A modified gravity model based on the multidimensional characteristics of the integrated transport network nodes is constructed to calculate the strength of the spatial connections between districts and counties within the urban agglomeration. Furthermore, a model of spatially linked networks is constructed by combining the spatial structure theory with complex network theory. This model takes the skeleton of the comprehensive transportation network as the main body, the districts and counties as the nodes, and the indicators of transportation network level, functional attractiveness and radiance, and carbon emission correlation intensity as the connected edge weights having multidimensional and multilevel characteristics. Additionally, unnecessary parameter calculations are removed to improve the INFORMAP algorithm by combining the centralities of degree, betweenness, and closeness obtained from the complex network theory. This improved INFORMAP algorithm classifies regional clusters separately in terms of traffic, function, and carbon emissions. The result reflects the strength of the spatial linkages between the districts and counties of the urban agglomeration in different dimensions. Finally, based on the results of regional grouping and the hypergraph theory, we construct a hypergraph network model of ecologically integrated transport networks in urban agglomerations, and key indicators such as neighborhood hyper degree and neighborhood influence entropy are proposed to identify the key nodes of ecologically integrated transport networks in urban agglomerations. [Results] The high-speed railway, motorway, and mainline railway networks of the Guanzhong Plain urban agglomeration were divided into two clusters. The western cluster had a considerably lower frequency of intercity travel than the eastern cluster, and the Xi'an cluster had an increased transport network and frequency of intercity travel. The result of the high-level division of the transport network into clusters was mostly centered on prefecture-level cities. The spatial distribution pattern in terms of functions and carbon emission links had one pole and many cores, with Xi'an at the core. In terms of the relationship between cluster and administrative divisions, some districts and counties had broken through the constraints of higher administrative divisions to form independent groupings. Xi'an and Xianyang were key nodes in the construction of the ecologically integrated transport network of the city cluster. The importance of the nodes in the eastern cluster was found to be greater compared to the western part. [Conclusions] To achieve an integrated development pattern of transport, economy, and ecological environment quality in urban agglomerations, we optimize the layout of the existing transport network, increase the proportion of the low-grade transport network, supplement and connect the high-grade transport network through the articulation role of the low-grade transport network, and create an integrated multilevel transportation network pattern.
Key wordstraffic engineering    urban agglomeration    ecologically integrated transportation network    clusters    key nodes
收稿日期: 2022-12-11      出版日期: 2023-10-16
基金资助:国家自然科学基金资助项目(51878062);陕西省交通厅科技项目(21-13R)
引用本文:   
马书红, 杨磊, 陈西芳, 朱敏. 城市群生态综合交通网络组团特性分析与关键节点识别[J]. 清华大学学报(自然科学版), 2023, 63(11): 1770-1780.
MA Shuhong, YANG Lei, CHEN Xifang, ZHU Min. Cluster characteristics analysis and critical node identification in ecologically integrated transport networks in urban agglomerations. Journal of Tsinghua University(Science and Technology), 2023, 63(11): 1770-1780.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.26.031  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I11/1770
  
  
  
  
  
  
  
  
  
  
[1] 熊鹰,李亮,孙维筠,等.环长株潭城市群城际空间联系演化分析[J].经济地理, 2022, 42(7):73-81. XIONG Y, LI L, SUN W J, et al. Evolution of the spatial heterogeneity of urban linkages in the urban agglomeration around Changsha-Zhuzhou-Xiangtan[J]. Economic Geography, 2022, 42(7):73-81.(in Chinese)
[2] ZHANG P F, ZHAO Y Y, ZHU X H, et al. Spatial structure of urban agglomeration under the impact of high-speed railway construction:Based on the social network analysis[J]. Sustainable Cities and Society, 2020, 62:102404.
[3] REN Y, TIAN Y, XIAO X. Spatial effects of transportation infrastructure on the development of urban agglomeration integration:Evidence from the Yangtze River economic belt[J]. Journal of Transport Geography, 2022, 104:103431.
[4] CAO J H. Measurement of urban integration degree of urban agglomeration under the background of regional integration:A case of Nanjing, Zhenjiang, and Yangzhou[J/OL]. The International Journal of Electrical Engineering&Education.(2020-7-8)[2022-12-11]. https://journals.sagepub.com/doi/10.1177/0020720920940610.
[5] 王瑞莉,刘玉,王成新,等.黄河流域经济联系及其网络结构演变研究[J].世界地理研究, 2022, 31(3):527-537. WANG R L, LIU Y, WANG C X, et al. Study on the economic connection and network structure evolution of the Yellow River Basin[J]. World Regional Studies, 2022, 31(3):527-537.(in Chinese)
[6] 温惠英,姜莉.基于交通可达性的粤港澳大湾区城市腹地划分研究[J].华南理工大学学报(自然科学版), 2021, 49(12):79-88. WEN H Y, JIANG L. Identification of urban hinterland based on traffic accessibility:A case study of Guangdong-Hong Kong-Macao greater bay area[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(12):79-88.(in Chinese)
[7] 陈刚,吴清,刘勇,等.基于夜间灯光数据的珠三角城市群空间结构识别[J].统计与决策, 2022, 38(20):117-121. CHEN G, WU Q, LIU Y, et al. Spatial structure identification of the Pearl River Delta urban agglomeration based on nighttime lighting data[J]. Statistics&Decision, 2022, 38(20):117-121.(in Chinese)
[8] 赵金丽,张学波,任嘉敏,等.多元流视角下黄河流域城市网络空间结构及其影响因素[J].地理科学, 2022, 42(10):1778-1787. ZHAO J L, ZHANG X B, REN J M, et al. Spatial structure and influencing factors of urban network in the Yellow River Basin based on multiple flows[J]. Scientia Geographica Sinica, 2022, 42(10):1778-1787.(in Chinese)
[9] LIU Y, LIU T, MA J, et al. A comparative study on characteristics of intercity highway travel network in urban agglomeration based on mobile signaling datum[C]//Proceedings of the 4th International Symposium on Traffic Transportation and Civil Architecture. Suzhou, China:IEEE, 2021:23-27.
[10] JIA G L, MA R G, HU Z H. Urban transit network properties evaluation and optimization based on complex network theory[J]. Sustainability, 2019, 11(7):2007.
[11] 蒋世洪.城市公共交通网络关键节点识别研究[D].重庆:西南大学, 2022. JIANG S H. Research on critical node identification of urban public transportation network[D]. Chongqing:Southwest University, 2022.(in Chinese)
[12] 马超群,张爽,陈权,等.客流特征视角下的轨道交通网络特征及其脆弱性[J].交通运输工程学报, 2020, 20(5):208-216. MA C Q, ZHANG S, CHEN Q, et al. Characteristics and vulnerability of rail transit network based on perspective of passenger flow characteristics[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5):208-216.(in Chinese)
[13] 王亭,张永,周明妮,等.融合网络拓扑结构特征与客流量的城市轨道交通关键节点识别研究[J].交通运输系统工程与信息, 2022, 22(6):201-211. WANG T, ZHANG Y, ZHOU M N, et al. Identification of key nodes of urban rail transit integrating network topology characteristics and passenger flow[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(6):201-211.(in Chinese)
[14] 薛锋,何传磊,黄倩.成都地铁网络的关键节点识别方法及性能分析[J].中国安全科学学报, 2019, 29(1):93-99. XUE F, HE C L, HUANG Q. Identification of key nodes in Chengdu metro network and analysis of network performance[J]. China Safety Science Journal, 2019, 29(1):93-99.(in Chinese)
[15] 刘杰.铁路货物运输网络关键节点识别算法研究[J].重庆交通大学学报(自然科学版), 2021, 40(8):71-77. LIU J. Key node identification algorithm of railway freight transportation network[J]. Journal of Chongqing Jiaotong University (Natural Sciences), 2021, 40(8):71-77.(in Chinese)
[16] ZHANG H, CUI H D, WANG W, et al. Properties of Chinese railway network:Multilayer structures based on timetable data[J]. Physica A:Statistical Mechanics and its Applications, 2020, 560:125184.
[17] LI J W, WEN X X, WU M G, et al. Identification of key nodes and vital edges in aviation network based on minimum connected dominating set[J]. Physica A:Statistical Mechanics and its Applications, 2020, 541:123340.
[18] HE H, LIU W G, ZHAO Z H, et al. Vulnerability of regional aviation networks based on DBSCAN and complex networks[J]. Computer Systems Science and Engineering, 2022, 43(2):643-655.
[19] ZHU C S, WANG X Y. Research on evaluation algorithm of key nodes in urban road traffic network based on complex network[J]. Journal of Physics:Conference Series, 2020, 1629:012021.
[20] 张诚,汪成银,陈志伟,等.基于空间流量度的城市路网关键节点挖掘方法[J].重庆交通大学学报(自然科学版), 2021, 40(6):28-35. ZHANG C, WANG C Y, CHEN Z W, et al. Mining method of key nodes of urban road network based on spatial-flow degree[J]. Journal of Chongqing Jiaotong University (Natural Sciences), 2021, 40(6):28-35.(in Chinese)
[21] 冯芬玲,许天鸿.多式联运网络关键节点识别及性能分析:以珠江西江经济带多式联运网络为例[J].铁道科学与工程学报, 2021, 18(12):3121-3129. FENG F L, XU T H. Identification and performance analysis of key nodes in multimodal transport network[J]. Journal of Railway Science and Engineering, 2021, 18(12):3121-3129.(in Chinese)
[22] 冯芬玲,蔡明旭,贾俊杰.基于多层复杂网络的中欧班列运输网络关键节点识别研究[J].交通运输系统工程与信息, 2022, 22(6):191-200. FENG F L, CAI M X, JIA J J. Key node identification of China railway express transportation network based on multi-layer complex network[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(6):191-200.(in Chinese)
[23] 马书红,武亚俊,陈西芳.城市群多模式交通网络结构韧性分析:以关中平原城市群为例[J].清华大学学报(自然科学版), 2022, 62(7):1228-1235. MA S H, WU Y J, CHEN X F. Structural resilience of multimodal transportation networks in urban agglomerations:A case study of the Guanzhong Plain urban agglomeration network[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(7):1228-1235.(in Chinese)
[24] 毛剑楠,刘澜.城市群客运网络节点重要度识别方法[J].公路交通科技, 2019, 36(5):130-137. MAO J N, LIU L. A method for identifying node importance of passenger transport network in urban agglomeration[J]. Journal of Highway and Transportation Research and Development, 2019, 36(5):130-137.(in Chinese)
[25] 陕西省统计局.陕西统计年鉴2021[EB/OL].[2022-12-02]. http://tjj.shaanxi.gov.cn/tjsj/ndsj/tjnj/sxtjnj/index.html?2022. Statistic Bureau of Shaanxi Province. 2021 Shaanxi statistical yearbook[2022-12-02]. http://tjj.shaanxi.gov.cn/tjsj/ndsj/tjnj/sxtjnj/index.html?2022.(in Chinese)
[26] 山西省统计局.山西统计年鉴2021[EB/OL].[2022-12-02]. http://tjj.shanxi.gov.cn/tjsj/tjnj/nj2021/zk/indexch.htm. Statistic Bureau of Shanxi Province. 2021 Shanxi statistical yearbook[2022-12-02]. http://tjj.shanxi.gov.cn/tjsj/tjnj/nj2021/zk/indexch.htm.(in Chinese)
[27] 甘肃省统计局.甘肃统计年鉴2021[EB/OL].[2022-12-02]. http://tjj.gansu.gov.cn/tjj/c109464/info_disp.shtml. Statistic Bureau of Gansu Province. 2021 Gansu statistical yearbook[2022-12-02]. http://tjj.gansu.gov.cn/tjj/c109464/info_disp.shtml.(in Chinese)
[28] CHEN J D, GAO M, CHENG S L, et al. County-level CO2 emissions and sequestration in China during 1997-2017[J]. Scientific Data, 2020, 7(1):391.
[1] 萧星宇, 梅诗雨, 刘瑞琪, 王阔, 邓青, 黄丽达, 于峰. 新冠疫情对京津冀城市群城市发展的影响——以北京、天津、石家庄三大城市为例[J]. 清华大学学报(自然科学版), 2023, 63(6): 994-1002.
[2] 陈若宇, 周江评. 基于位置服务大数据的粤港澳大湾区通勤标度特征分析[J]. 清华大学学报(自然科学版), 2022, 62(7): 1195-1202.
[3] 李自圆, 孙昊, 李林波. 基于手机信令数据的长三角全域城际出行网络分析[J]. 清华大学学报(自然科学版), 2022, 62(7): 1203-1211.
[4] 杨星琪, 黄海军. 治理“大城市病”的城市群税收政策[J]. 清华大学学报(自然科学版), 2022, 62(7): 1212-1219.
[5] 马书红, 武亚俊, 陈西芳. 城市群多模式交通网络结构韧性分析——以关中平原城市群为例[J]. 清华大学学报(自然科学版), 2022, 62(7): 1228-1235.
[6] 马壮林, 高阳, 胡大伟, 王晋, 马飞, 熊英. 城市群绿色交通水平测度与时空演化特征实证研究[J]. 清华大学学报(自然科学版), 2022, 62(7): 1236-1250.
[7] 原雅丽, 杨小宝, 李虹慧, 四兵锋. 突发事件下城市群内旅客城际出行方式选择行为[J]. 清华大学学报(自然科学版), 2022, 62(7): 1142-1150.
[8] 景云, 李凯旋, 王旋, 郭思冶, 范骁. 高速铁路成网条件下跨城市群客流输送模式[J]. 清华大学学报(自然科学版), 2022, 62(7): 1151-1162.
[9] 杨扬, 张天雨, 朱宇婷, 姚恩建. 考虑建设时序和动态需求的城际公路充电设施优化布局[J]. 清华大学学报(自然科学版), 2022, 62(7): 1163-1177,1219.
[10] 陈洪昕, 崔健, 张佐, 姚丹亚. 基于自然语言处理的交通拥堵程度评价[J]. 清华大学学报(自然科学版), 2016, 56(3): 287-293.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn