Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2023, Vol. 63 Issue (11): 1868-1877    DOI: 10.16511/j.cnki.qhdxxb.2023.26.027
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
航天器多层隔热组件薄膜受力均匀性
刘跃1, 索双富2, 郭飞2, 黄民1, 孙巍伟1, 谭博韬1, 黄首清3, 李芳勇3
1. 北京信息科技大学 机电工程学院, 现代测控技术教育部重点实验室, 北京 100192;
2. 清华大学 机械工程系, 摩擦学国家重点实验室, 北京 100084;
3. 北京卫星环境工程研究所, 航天机电产品环境可靠性试验技术北京市重点实验室, 北京 100094
Stress uniformity of spacecraft multilayer thermal insulation components
LIU Yue1, SUO Shuangfu2, GUO Fei2, HUANG Min1, SUN Weiwei1, TAN Botao1, HUANG Shouqing3, LI Fangyong3
1. Ministry of Education Key Laboratory of Modern Measurement and Control Technology, Mechanical Electrical Engineering School, Beijing Information Science & Technology University, Beijing 100192, China;
2. State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
3. Beijing Key Laboratory of Environment & Reliability Test Technology for Aerospace Mechanical & Electrical Products, Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China
全文: PDF(7426 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 航天器在发射迅速泄压过程中,多层隔热组件的薄膜受力均匀与否是判断隔热组件是否失效的关键指标之一。在一定压差环境下,若每层隔热薄膜受力不均匀,则某一层薄膜会因承受较大流体压力而失效。该文以多层隔热组件受力均匀性指标展开研究,建立多层隔热组件三维切片模型,采用计算流体动力学(computational fluid dynamics,CFD)方法,分析了多层隔热组件在泄压过程中各级薄膜的受力情况;提出了薄膜压差系数,该系数是体现薄膜受力均匀性的关键指标;采用正交实验设计,分析了多项结构参数对薄膜压差系数的影响规律。结果表明:结构参数对薄膜压差系数的影响程度从大到小分别为薄膜孔直径、薄膜层数、错孔距离和薄膜厚度。该文提出了一种计算薄膜压差系数的数学解析方法,通过将该数学解析方法与CFD方法的计算结果进行对比分析,发现该方法更准确。该数学解析方法可用于快速计算多层隔热组件薄膜压差系数,为判断多层隔热组件薄膜在航天器发射过程中的受力均匀性提供依据,对避免多层隔热组件失效具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘跃
索双富
郭飞
黄民
孙巍伟
谭博韬
黄首清
李芳勇
关键词 航天器多层隔热组件三维切片模型流体动力学薄膜压差系数    
Abstract:[Objective] Multilayer thermal insulation components are key parts for thermal insulation and depressurization on the outer surface of a spacecraft, with the structure comprising primarily of multilayer thin films and nylon nets. However, during the process of spacecraft launch, the internal gas in the multilayer thermal insulation components rapidly flows out because of the rapid decrease in external pressure. Furthermore, the internal flow field changes considerably, resulting in the deformation of the multilayer thermal insulation components. Under certain pressure differential conditions, the stress on each thin film is nonuniform, and structural failure may occur on a certain thin film layer due to extreme stress. Thus, the stress uniformity of the multilayer thermal insulation components is a key indicator of structural failure. This paper proposes an evaluation indicator to assess the thin film stress uniformity of the multilayer thermal insulation components. [Methods] Three-dimensional slice models of the multilayer thermal insulation components are established, and the computational fluid dynamics method is adopted to analyze the internal flow field distribution and stress on each thin film during the depressurization process. Through the systematic analysis of the fluid pressure differential on each thin film, the thin film pressure differential coefficient is proposed as an evaluation indicator for stress uniformity. Furthermore, four typical structural parameters, namely the number of layers, thickness of the film, diameter of the hole, and distance of the hole, are selected within the extreme design range of various structural parameters of the multilayer thermal insulation components, and the orthogonal experimental design method is employed to analyze these structural parameters and determine the influence law of the structural parameters on the thin film pressure differential coefficient. Finally, a mathematical analytical model for calculating the thin film pressure differential coefficient is proposed based on the influence law. [Results] The orthogonal experimental results revealed that the four typical structural parameters had different degrees of influence on the thin film pressure differential coefficient. The thickness of the film had the highest degree of influence, whereas the diameter of the hole had the lowest degree of influence. The results of the mathematical analysis and computational fluid dynamics methods were compared, and the results revealed that: (1) For a single-hole thin film structure, the maximum error in results between the mathematical analytical model and the computational fluid dynamics model was 4.5%. (2) For a double-hole thin film structure, the maximum error in results between the mathematical analytical model and the computational fluid dynamics model was 5.3%. (3) The mathematical analytical method was accurate and fast. [Conclusions] This paper reveals the internal flow field distribution and the film stress of multilayer thermal insulation components using a three-dimensional slice model and proposes the thin film pressure differential coefficient as a key indicator of stress uniformity. Furthermore, this paper proposes a feasible and effective mathematical analytical model to rapidly evaluate the thin film stress uniformity by exploring the influence law of the four typical structural parameters on the thin film pressure differential coefficient through the orthogonal experimental test. The proposed mathematical analytical method can be used to rapidly calculate the pressure differential coefficient, which provides a basis for judging the stress uniformity of the multilayer thermal insulation components during spacecraft launch, thereby preventing the failure of the multilayer thermal insulation components.
Key wordsspacecraft    multilayer thermal insulation components    three-dimensional slice model    fluid dynamics    thin film pressure differential coefficients
收稿日期: 2022-09-29      出版日期: 2023-10-16
基金资助:国家自然科学基金面上项目(52075043);北京信息科技大学科研基金项目(2023XJJ03)
通讯作者: 索双富,副教授,E-mail:sfsuo@tsinghua.edu.cn     E-mail: sfsuo@tsinghua.edu.cn
引用本文:   
刘跃, 索双富, 郭飞, 黄民, 孙巍伟, 谭博韬, 黄首清, 李芳勇. 航天器多层隔热组件薄膜受力均匀性[J]. 清华大学学报(自然科学版), 2023, 63(11): 1868-1877.
LIU Yue, SUO Shuangfu, GUO Fei, HUANG Min, SUN Weiwei, TAN Botao, HUANG Shouqing, LI Fangyong. Stress uniformity of spacecraft multilayer thermal insulation components. Journal of Tsinghua University(Science and Technology), 2023, 63(11): 1868-1877.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.26.027  或          http://jst.tsinghuajournals.com/CN/Y2023/V63/I11/1868
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 陈阳,宁献文,苏生,等.不同真空度下多层隔热组件传热性能的实验研究[J].中国科学:技术科学, 2015, 45(3):263-267. CHEN Y, NING X W, SU S, et al. Experiment research on heat-transfer capability of the multi-layer insulation blankets under different vacuum degrees[J]. Scientia Sinica Technologica, 2015, 45(3):263-267.(in Chinese)
[2] 杨冬晖,李猛,尚坤.航天服隔热材料技术研究进展[J].航空材料学报, 2016, 36(2):87-96. YANG D H, LI M, SHANG K. Development of thermal insulation materials technology for spacesuit[J]. Journal of Aeronautical Materials, 2016, 36(2):87-96.(in Chinese)
[3] 李德富,杨炜平,刘小旭.多层隔热材料热物性参数工程计算方法[J].航天器环境工程, 2014, 31(4):425-429. LI D F, YANG W P, LIU X X. Calculation of thermal properties for multilayer insulation materials[J]. Spacecraft Environment Engineering, 2014, 31(4):425-429.(in Chinese)
[4] 苏新明,刘畅,文晶,等.基于一维稳态导热模型的多层组件常压隔热性能试验研究[J].航天器环境工程, 2016, 33(6):634-638. SU X M, LIU C, WEN J, et al. Experimental study of the performance of multilayer heat insulation in ambient environment based on the 1-D heat transfer model[J]. Spacecraft Environment Engineering, 2016, 33(6):634-638.(in Chinese)
[5] KIM J M. Thermal analysis of thermal protection system of test launch vehicle[J]. International Journal of Thermophysics, 2017, 38(10):145.
[6] HAIM Y, WEISS Y, LETAN R. Effect of spacers on the thermal performance of an annular multi-layer insulation[J]. Applied Thermal Engineering, 2014, 65(1-2):418-421.
[7] 李鹏,程惠尔,秦文波.多层打孔隔热材料空间应用热性能研究[J].宇航材料工艺, 2006, 36(S1):18-22. LI P, CHENG H E, QIN W B. Thermal performance study of multilayer perforated insulation material for space application[J]. Aerospace Materials&Technology, 2006, 36(S1):18-22.(in Chinese)
[8] 雷营生,徐红艳,谢荣建,等.空间用多层绝热组件隔热特性的试验研究[J].红外, 2018, 39(3):13-17. LEI Y S, XU H Y, XIE R J, et al. Experimental study of heat insulation capability of MLI assembly in space[J]. Infrared, 2018, 39(3):13-17.(in Chinese)
[9] 赵一搏,杨汝平,邱日尧,等.多层隔热结构研究进展[J].宇航材料工艺, 2013, 43(4):29-34. ZHAO Y B, YANG R P, QIU R Y, et al. Recent progress on multi-layer insulation structures[J]. Aerospace Materials&Technology, 2013, 43(4):29-34.(in Chinese)
[10] 周充,汪荣顺,鲁雪生,等.高真空多层绝热的主要影响因素[J].真空与低温, 1998, 4(1):5-8. ZHOU C, WANG R S, LU X S, et al. The main influencing factors of high vacuum multilayer insulation[J]. Vacuum&Cryogenics, 1998, 4(1):5-8.(in Chinese)
[11] YOUNGQUIST R C, NURGE M A, JOHNSON W L, et al. Modeling transmission effects on multilayer insulation[J]. Journal of Thermal Science and Engineering Applications, 2015, 7(2):021007.
[12] 任红艳,赵欣.低空环境中多层隔热组件的破坏机理研究及防护[J].航天器环境工程, 2008, 25(6):523-525. REN H Y, ZHAO X. The failure mechanism of multilayer insulation (MLI) in low-altitude environment and its protection[J]. Spacecraft Environment Engineering, 2008, 25(6):523-525.(in Chinese)
[13] 阎师,胡芳,黄首清,等.基于CFD和神经网络的2级刷式密封结构泄漏和级间不平衡性分析[J].航空发动机, 2022, 48(3):70-75. YAN S, HU F, HUANG S Q, et al. Leakage and inter-stage imbalance analysis of two-stage brush seals structure based on CFD and neural network[J]. Aeroengine, 2022, 48(3):70-75.(in Chinese)
[14] 黄首清,索双富,李永健,等.基于2维叉排管束模型的刷式密封介质流动计算[J].清华大学学报(自然科学版), 2016, 56(2):160-166. HUANG S Q, SUO S F, LI Y J, et al. Flows in brush seals based on a 2-D staggered tube bundle model[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(2):160-166.(in Chinese)
[15] HUANG S Q, SUO S F, LI Y J, et al. Theoretical and experimental investigation on tip forces and temperature distributions of the brush seal coupled aerodynamic force[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(5):052502.
[16] JIANG J, YANG Y Y, HUANG W F, et al. Numerical and experimental investigation on uniformity of pressure loads in labyrinth seal[J]. Advances in Mechanical Engineering, 2017, 9(9):1-8.
[17] JIANG J, YANG Y Y, LI Y J, et al. Theoretical and experimental investigation on maximum pressure loads of labyrinth seal's teeth[J]. Advances in Mechanical Engineering, 2018, 10(10):1-8.
[1] 陈书清, 李铁民. 基于自适应柔顺控制的航天器部件装配[J]. 清华大学学报(自然科学版), 2023, 63(11): 1808-1819.
[2] 侯森浩, 唐晓强, 孙海宁, 崔志伟, 王殿君. 面向航天器分离的高速索力传递特性[J]. 清华大学学报(自然科学版), 2021, 61(3): 177-182.
[3] 方元坤, 孟子阳, 尤政. 多模式分布式遥感微纳航天器集群自然编队构型[J]. 清华大学学报(自然科学版), 2018, 58(5): 482-488.
[4] 刘家宏, 周晋军, 王浩, 吕宏兴. 山地灌溉管道水力特性的数值模拟[J]. 清华大学学报(自然科学版), 2016, 56(4): 387-393.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn