Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (1): 63-74    DOI: 10.16511/j.cnki.qhdxxb.2023.26.048
  动力与能源 本期目录 | 过刊浏览 | 高级检索 |
航空煤油多液滴蒸发特性实验
王方1,2,3, 韩琪炜1, 李典望1, 金捷1,2,3
1. 北京航空航天大学 能源与动力工程学院, 北京 100191;
2. 北京航空航天大学 江西研究院, 南昌 330096;
3. 北航成都航空动力创新研究院, 成都 611930
Experimental study on the evaporation characteristics of aviation kerosene with multidroplets
WANG Fang1,2,3, HAN Qiwei1, LI Dianwang1, JIN Jie1,2,3
1. School of Energy and Engineering, Beihang University, Beijing 100191, China;
2. Jiangxi Research Institute of BeiHang University, Nanchang 330096, China;
3. Chengdu Aerodynamics Institute of Beihang University, Chengdu 611930, China
全文: PDF(8394 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 燃烧室中燃料经喷油嘴或甩油盘等装置破碎、雾化成含有密集微小液滴的液滴群,液滴群在燃烧室的高温对流环境中先蒸发,而后与高压空气混合燃烧。该文开展了多液滴蒸发实验,旨在解决以往研究中以单液滴蒸发代替实际工况中液滴群蒸发产生的忽略液滴间相互作用的问题,为多液滴蒸发数值模拟理论提供实验数据支撑。该研究使用高速摄影机拍摄石英纤维悬挂的航空煤油液滴在高温400、500和600℃静止工况下蒸发的过程,并处理特定帧数的图片得到液滴蒸发特性曲线;多液滴蒸发实验中选择的液滴间距范围为1~4倍液滴直径。结果表明:多液滴的平均蒸发速率随着液滴间距的增大而增大,最终趋近于单液滴的平均蒸发速率,且近似成指数规律;液滴间距超过临界间距时,双液滴可看作2个独立的单液滴,此时的平均蒸发速率与单液滴平均蒸发速率基本没有区别;当2个液滴足够接近时,双液滴的平均蒸发速率降到单液滴的80%~90%。随着温度升高,液滴之间的影响距离会增大。该文得到了双液滴和三液滴蒸发的实验数据,以及双液滴关于液滴间距和温度的经验公式,实验结果与理论分析结论相吻合,为多液滴蒸发模型提供了实验数据支撑和理论创新依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王方
韩琪炜
李典望
金捷
关键词 航空煤油双液滴蒸发特性落滴法可变液滴间距    
Abstract:[Objective] The fuel within the combustion chamber of an aircraft engine is fragmented and atomized into a group of droplets, including dense small droplets, through devices such as fuel injectors or fuel throwers. These droplets evaporate in the high-temperature convective environment of the combustion chamber and subsequently mix with high-pressure air for combustion. Previous studies have focused on single-droplet evaporation characteristics rather than actual droplet group characteristics, thereby neglecting the interaction between droplets. To address this issue, multidroplets evaporation experiments are conducted in this study. This article provides experimental data to support the numerical simulation theory of multidroplet evaporation and accordingly supplements and corrects the droplet evaporation model.[Methods] In the multidroplet evaporation experiments, the evaporation processes of single, double, and triple jet fuel droplets suspend by quartz fiber under static conditions at high temperatures of 400, 500, and 600℃ are captured using a high-speed camera. Thereafter, the images are processed at a specific frame rate. A self-programming software is used to isolate the main body of the droplet, and the images are imported into MATLAB data processing software to obtain the droplet evaporation characteristic curve. Linear fitting is performed on the stable section of the evaporation characteristic curve to determine the evaporation rate of the droplet. The range of droplet spacing select in the multidroplet evaporation experiments is 1-4 times the droplet diameter.[Results] The results showed that at the same temperature, with increasing droplet spacing, the average evaporation rate of multiple droplets increased while the rate of change in evaporation rate decreased. The evaporation rate of multiple droplets tended to approach that of a single droplet and followed an approximate exponential trend. When the distance between droplets exceeded the critical distance, the mutual influence between droplets became weak enough to be ignored, and double droplets could be regarded as two independent single droplets. At this point, there was no difference between the evaporation rate of multiple and single droplets. However, when two droplets were sufficiently close, the mutual influence between them reached its maximum, and the average evaporation rate of the two droplets dropped to 80%-90% of that of a single droplet. As the temperature increased, the mutual influence between droplets became stronger, and accordingly, the critical droplet distance increased.[Conclusions] These experimental results are consistent with the theoretical model derivation. When the droplet spacing is less than the critical droplet spacing, the evaporation rate increases monotonously with increasing droplet spacing, and the rate of change gradually decreases to zero. When the distance between droplets exceed the critical distance, the evaporation rate of multiple droplets remain constant and is approximately equal to that of a single droplet. During the investigation of the empirical formula for multidroplet evaporation, the goodness of fit of the selected exponential form ranges between 0.899 and 0.983. This paper obtains experimental data on double droplets and triple droplets evaporation and obtains empirical formulas for droplet spacing and temperature of double droplets. The experimental data are consistent with theoretical analysis conclusions, providing experimental data support and theoretical innovation for multidroplets evaporation models.
Key wordsaviation kerosene double droplets    evaporation characteristics    dropping method    variable droplet spacing
收稿日期: 2023-04-21      出版日期: 2023-11-30
基金资助:国家自然科学基金面上项目(12172345);国家自然科学基金重大研究计划项目(91741125,92041001)
作者简介: 王方(1972—),女,副教授。E-mail:fwang@buaa.edu.cn
引用本文:   
王方, 韩琪炜, 李典望, 金捷. 航空煤油多液滴蒸发特性实验[J]. 清华大学学报(自然科学版), 2024, 64(1): 63-74.
WANG Fang, HAN Qiwei, LI Dianwang, JIN Jie. Experimental study on the evaporation characteristics of aviation kerosene with multidroplets. Journal of Tsinghua University(Science and Technology), 2024, 64(1): 63-74.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.26.048  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I1/63
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1]JAVED I, BAEK S W, WAHEED K, et al. Evaporation characteristics of kerosene droplets with dilute concentrations of ligand-protected aluminum nanoparticles at elevated temperatures[J]. Combustion and Flame, 2013, 160(12):2955-2963.
[2]余永刚, 金志明, 曾永珠. LP1846液滴在高温环境中的蒸发特性[J]. 弹道学报, 1995, 7(2):10-14. YU Y G, JIN Z M, ZENG Y Z. Evaporation of LP1846 droplet in hot ambient[J]. Journal of Ballistics, 1995, 7(2):10-14. (in Chinese)
[3]VERWEY C, BIROUK M. Experimental investigation of the effect of natural convection on the evaporation characteristics of small fuel droplets at moderately elevated temperature and pressure[J]. International Journal of Heat and Mass Transfer, 2018, 118:1046-1055.
[4]GHASSEMI H, BAEK S W, KHAN Q S. Experimental study on evaporation of kerosene droplets at elevated pressures and temperatures[J]. Combustion Science and Technology, 2006, 178(9):1669-1684.
[5]LEFEBVRE A H. Atomization and sprays[M]. Boca Raton:CRC Press, 1988.
[6]AGGARWAL S K. Single droplet ignition:Theoretical analyses and experimental findings[J]. Progress in Energy and Combustion Science, 2014, 45:79-107.
[7]JU D H, HUANG L, ZHANG K P, et al. Comparison of evaporation rate constants of a single fuel droplet entering subcritical and supercritical environments[J]. Journal of Molecular Liquids, 2022, 347:118346.
[8]ZHU B Z, CHEN W Q, SUN Y L, et al. Experimental study on the evaporation and combustion characteristics of double Al/n-heptane based nanofluid fuel droplets in high temperature environment[J]. Thermochimica Acta, 2021, 705:179049.
[9]WANG J G, HUANG X Y, QIAO X Q, et al. Experimental study on evaporation characteristics of single and multiple fuel droplets[J]. Journal of the Energy Institute, 2020, 93(4):1473-1480.
[10]ELKOTB M M, ALY S L, ELSALMAWY H A. Evaporation characteristics of fuel and multifuel droplets[J]. Combustion and Flame, 1991, 85(3-4):300-308.
[11]KHAN Q, BAEK S W, LEE S Y. Effect of droplet initial diameter on droplet vaporization regimes for kerosene fuel droplet[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reno, USA:AIAA, 2007:AIAA 2007-1181.
[12]REHMAN H L U, WEISS J, SEERS P. Effect of heat conduction on droplet life time and evaporation rate under forced convection at low temperatures[J]. Experimental Thermal and Fluid Science, 2016, 72:59-66.
[13]JAVED I, BAEK S W, WAHEED K. Effects of dense concentrations of aluminum nanoparticles on the evaporation behavior of kerosene droplet at elevated temperatures:The phenomenon of microexplosion[J]. Experimental Thermal and Fluid Science, 2014, 56:33-44.
[14]GODSAVE G A E. Studies of the combustion of drops in a fuel spray:The burning of single drops of fuel[J]. Symposium (International) on Combustion, 1953, 4(1):818-830.
[15]IMAOKA R T, SIRIGNANO W A. Vaporization and combustion in three-dimensional droplet arrays[J]. Proceedings of the Combustion Institute, 2005, 30(2):1981-1989.
[16]周力行. 燃烧理论和化学流体力学[M]. 北京:科学普及出版社, 1986. ZHOU L X. Combustion theory and chemical fluid mechanics[M]. Beijing:Science Popularization Press, 1986. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn