Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (1): 75-89    DOI: 10.16511/j.cnki.qhdxxb.2023.26.043
  动力与能源 本期目录 | 过刊浏览 | 高级检索 |
船用螺旋桨水动力、空化和低噪声集成设计
杨琼方1, 黄修长2, 李晔3
1. 海军工程大学 动力工程学院, 武汉 430033;
2. 上海交通大学 机械与动力工程学院, 上海 200240;
3. 上海交通大学 船舶海洋与建筑工程学院, 上海 200240
Integrated design of ship propellers considering hydrodynamics, cavitation, and low noise
YANG Qiongfang1, HUANG Xiuchang2, LI Ye3
1. College of Naval Architecture and Marine Power, Naval University of Engineering, Wuhan 430033, China;
2. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
3. School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
全文: PDF(13271 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 该文以开源软件OpenProp为基础,集成螺旋桨无空化噪声理论公式、空化噪声估算经验公式和新Burrill图谱,构建了船用桨水动力、空化和低噪声集成设计软件OpenProp+。OpenProp+的核心功能包括:完成桨叶几何设计并可信预报敞水性能曲线;判断桨叶有无空化产生,量化并确定空化范围,输出无空化工况的声压谱源级与中纵剖面声指向性图,估算空化噪声谱源级。当设计桨叶时,先确定相对最优的叶片数、直径和转速等总体参数,再优选叶型参数,设计考虑具体包括确定弦长分布规律、应用大侧斜设计要素、适当增加0.70R~0.95R(R为桨叶半径)叶截面最大厚度。桨叶最佳侧斜角临界值位于侧斜度50.0%~70.0%,设计初值可取60.0%。OpenProp+一体化设计效果由低噪声5叶桨设计给予检验,反馈良好,可直接服务于船用桨工程设计。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨琼方
黄修长
李晔
关键词 螺旋桨设计水动力空化低噪声OpenProp    
Abstract:[Objective] Designing ship propellers is a comprehensive engineering task that synergistically considers hydrodynamics, cavitation, vibration, and noise performance. To address the limitations of current design guidance cases and existing open design software, an integrated software called OpenProp+ was developed. This application is designed to facilitate advancements in marine propeller design by incorporating theoretical formulas for noncavitation noise, empirical formulas for cavitation noise estimation, and the new Burrill diagram into the open-source software, OpenProp+.[Methods] The process of blade geometry design begins with determining the number of blades based on design requirements and empirical knowledge. The diameter is determined by the maximum power density limit and the optimal speed that meets the main engine's speed constraint, while the rotational speed is established according to the relative optimal efficiency. The three essential parameters for 3D blade section optimization along the radial direction are accomplished, including determining chord length distribution, applying a highly skewed angle, and suitably increasing the maximum thickness of the blade section from 0.70R to 0.95R. Notably, the chord length distribution should differ between five-blade and seven-blade propellers. The optimal skew value for the critical blade lies between 50.0% and 70.0%, with an initial recommended value of 60.0%. Appropriately increasing the tip thickness and its rake enhances anti-cavitation performance. Following design and optimization, performance prediction involves utilizing theoretical formulas of the propeller's free sound field by National Advisory Committee for Aeronoutics (NACA) to predict the source level of the sound pressure spectrum under noncavitation conditions and to illustrate its longitudinal acoustic direction diagram at discrete line spectrums. Factors such as ship speed, propeller rotating speed, diameter, blade numbers, thrust, and torque contributions to sound pressure are integrated into these formulas. The new Burrill spectrum can subsequently be employed to ascertain the presence of cavitation, estimate its range if it does exist, and qualitatively measure its noise performance under specific operating conditions. Finally, the Brown empirical formula estimates the propeller cavitation noise spectrum, while the Fraser empirical formula and International Council for the Exploration of the Sea (ICES) standard are used to quantitatively evaluate noise performance levels.[Results] The effectiveness of the integrated design software, OpenProp+, was validated through the design and performance prediction of a low-noise five-blade propeller, which yielded positive feedback. Within the full operating range, the open water performance curve of the designed blade almost coincided with the measured values of the original blade. Even on the off-design operating condition farthest from the designed advance ratio, the deviation between the thrust coefficient and torque coefficient compared to their measured value was only 4.65%. Considering the true ship wake flow distribution, the design point efficiency decreased by about 4% and the anti-cavitation margin decreased by about 12%. This indicated that the design program could effectively design the blades and reasonably predict their hydrodynamic and cavitation performance.[Conclusions] OpenProp+ not only reliably predicts the open-water performance of existing propellers but also designs new propellers and accurately forecasts their open-water performance. It can determine the presence of cavitation, quantify its range if present, predict the noncavitation noise source level, and estimate the cavitation noise spectrum source level. Thus, OpenProp+ and the complete design chart incorporated in the software can directly aid in the engineering application of ship propeller design.
Key wordspropeller design    hydrodynamic    cavitation    low noise    OpenProp
收稿日期: 2023-01-03      出版日期: 2023-11-30
作者简介: 杨琼方(1984—),男,副教授。E-mail:yqfhaijun2008@126.com
引用本文:   
杨琼方, 黄修长, 李晔. 船用螺旋桨水动力、空化和低噪声集成设计[J]. 清华大学学报(自然科学版), 2024, 64(1): 75-89.
YANG Qiongfang, HUANG Xiuchang, LI Ye. Integrated design of ship propellers considering hydrodynamics, cavitation, and low noise. Journal of Tsinghua University(Science and Technology), 2024, 64(1): 75-89.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.26.043  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I1/75
  
  
  
  
  
  
  
  
  
  
  
[1] ANDERSEN P, KAPPEL J J, SPANGENBERG E. Aspects of propeller developments for a submarine[C]//Proceedings of the First International Symposium on Marine Propulsors. Trondheim, Norway:Norwegian Marine Technology Research Institute, 2009:554-561.
[2] 杨琼方, 王永生, 吴杰长. 泵类推进器振动和噪声控制机理[M]. 上海:上海交通大学出版社, 2021. YANG Q F, WANG Y S, WU J C. Vibration and radiation noise control for surface warship and submarine pumpjets[M]. Shanghai:Shanghai Jiao Tong University Press, 2021. (in Chinese)
[3] CUMMING R A, MORGAN W B, BOSWELL R J. Highly skewed propellers[C]//Proceedings of the Annual Weeting of the Society of Naval Architects and Marine Engineers. New York, USA:SNAME, 1972:98-135.
[4] TAMHANE A C. Development of an analysis and design optimization framework for marine propellers[D]. Norfolk:Old Dominion University, 2017.
[5] GYPA I. Interactive optimisation in marine propeller design[D]. Göteborg:Chalmers University of Technology, 2021.
[6] SKÅLAND E K. The influence of the choice of propeller design tool on propeller performance[D]. Trondheim:Norwegian University of Science and Technology, 2016.
[7] EPPS B P, KIMBALL R W. Unified rotor lifting line theory[J]. Journal of Ship Research, 2013, 57(4):181-201.
[8] EPPS B P. OpenProp V2.4 theory document[R]. New York:Massachusetts Institute of Technology, 2010.
[9] WEICK F E. Propeller design:A simple system based on model propeller test data-Ⅲ[R]. Washington, DC:National Advisory Committee for Aeronautics, 1926.
[10] VAZ G. Modelling of sheet cavitation on hydrofoils and marine propellers using boundary element methods[D]. Lisbon:Universidade T'ecnica de Lisboa, 2005.
[11] 王睿, 熊鹰. 对转桨整体定常面元法[J]. 上海交通大学学报, 2017, 51(7):826-830. WANG R, XIONG Y. Research on an integral steady panel method for contra-rotating propeller[J]. Journal of Shanghai Jiao Tong University, 2017, 51(7):826-830. (in Chinese)
[12] 刘业宝. 水下航行器泵喷推进器设计方法研究[D].哈尔滨:哈尔滨工程大学, 2013. LIU Y B. Study on design method of pump jet thruster for underwater vehicles[D]. Harbin:Harbin Engineering University, 2013. (in Chinese)
[13] 饶志强. 基于面元法的潜艇推进器水动力性能优化设计方法研究[D]. 上海:上海交通大学, 2017. RAO Z Q. A study of hydrodynamic optimization approach of submarine propulsors based on panel method[D]. Shanghai:Shanghai Jiao Tong University, 2017. (in Chinese)
[14] CHEKAB M A F, GHADIMI P, DJEDDI S R, et al. Investigation of different methods of noise reduction for submerged marine propellers and their classification[J]. American Journal of Mechanical Engineering, 2013, 1(2):34-42.
[15] BOSWELL R J, COX G G. Design and evaluation of a highly skewed propeller for a cargo ship[R]. Washington, DC:Naval Ship Research and Development Center, 1974.
[16] KARAFIATH G, HOTALING J M, MEEHAN J M. Fisheries research vessel hydrodynamic design minimizing bubble sweepdown[C]//Proceedings of MTS/IEEE Oceans 2001, An Ocean Odyssey. Honolulus, USA:IEEE, 2001:1212-1223.
[17] BAHTIARIAN M. Underwater radiated noise of the NOAA ship Oscar Dyson[J]. Journal of Noise Control Engineering, 2006, 54(4):224-235.
[18] DUELLEY R S. Autonomous underwater vehicle propulsion design[D]. Blacksburg:Virginia Polytechnic Institute and State University, 2010.
[19] ROSS D. Mechanics of underwater noise[M]. New York:Pergamon Press, 1976.
[20] BOSWELL R J. Design, cavitation performance, and open-water performance of a series of research skewed propellers[R]. Washington, DC:Naval Ship Research and Development Center, 1971.
[21] 杨琼方, 王永生, 张志宏. 侧斜与负载对螺旋桨无空化和空化水动力性能的影响[J]. 计算力学学报, 2012, 29(5):765-771. YANG Q F, WANG Y S, ZHANG Z H. Effects of skew and load on propeller non-cavitation and cavitation hydrodynamic performances[J]. Chinese Journal of Computational Mechanics, 2012, 29(5):765-771. (in Chinese)
[22] MOSAAD M A, MOSLEH M, EL-KILANI H, et al. Skewed propeller design for minimum induced vibrations[C]//Proceedings of the 1st International Symposium on Naval Architecture and Maritime, part Ⅵ:Ship propulsion. Istanbul, Turkey:Yildiz Technical University, 2011:405-416.
[23] ÖZDEN M C, GVRKAN A Y, ÖZDEN Y A, et al. Underwater radiated noise prediction for a submarine propeller in different flow conditions[J]. Ocean Engineering, 2016, 126:488-500.
[24] BODGER L, HELMA S, SASAKI N. Vibration control by propeller design[J]. Ocean Engineering, 2016, 120:175-181.
[25] KUIPER G. Effects of skew and rake on cavitation inception for propeller blades with thick blade sections[C]//Proceedings of the Twentieth Symposium on Naval Hydrodynamics. Santa Barbara, USA:National Academy Press, 1996:83-97.
[26] JESSUP S D, WANG H C. Propeller cavitation prediction for a ship in a seaway[R]. Bethesda:Naval Surface Warfare Center, 1996.
[27] 杨琼方, 王永生, 黄斌, 等. 融合升力线理论和雷诺时均模拟在螺旋桨设计和水动力性能预报中的应用[J]. 上海交通大学学报, 2011, 45(4):486-493. YANG Q F, WANG Y S, HUANG B, et al. Integrated lifting line theory and RANS simulation for propeller design and hydrodynamics prediction[J]. Journal of Shanghai Jiao Tong University, 2011, 45(4):486-493. (in Chinese)
[28] CHESNAKAS C, JESSUP S. Experimental characterization of propeller tip flow[C]//Proceedings of the Twenty-Second Symposium on Naval Hydrodynamics. Washington, DC, USA:National Academies Press, 1998:156-170.
[29] KINNAS S A, PYO S. Tip flows for wings and propellers and their effect on the predicted performance[R]. Austin:The University of Texas at Austin, 1998.
[30] GARRICK I E, WATKINS C E. A theoretical study of the effect of forward speed on the free-space sound-pressure field around propellers[R]. Washington, DC:National Advisory Committee for Aeronautics, 1953.
[31] BROWN N A. Cavitation noise problems and solutions[C]//Proceedings of the International Symposium on Shipboard Acoustics. Noordwijkehout, Netherlands:British Ship Research Association, 1978:00177060.
[32] EKINCI S, ÇELIK F, GUNER M. A practical noise prediction method for cavitating marine propellers[J]. Brodogradnja, 2010, 61(4):359-366.
[33] YOSHIMURA Y, KOYANAGI Y. Design of a small fisheries research vessel with low level of underwater-radiated noise[J]. The Journal of the Marine Acoustics Society of Japan, 2004, 31(3):137-145.
[34] CARLTON J S. Marine propellers and propulsion[M]. 2nd ed. Amsterdam:Elsevier, 2007.
[35] MOLLAND A F, TURNOCK S R, HUDSON D A. Ship resistance and propulsion:Practical estimation of ship propulsive power[M]. New York:Cambridge University Press, 2011.
[36] BLACK S D. Thrust breakdown characteristics of conventional propellers[R]. Bethesda:Naval Surface Warfare Center, 2007.
[37] MENARD L M. Prediction of performance and maneuvering dynamics for marine vehicles applied to DDG-1000[D]. Cambridge:Massachusetts Institute of Technology, 2010.
[38] BLIZZARD C R, COLANTONIO K, JONES V, et al. Ballistic missile defense submarine SSBMD design report[R]. Blacksburg:Virginia Polytechnic Institute and State University, 2008.
[39]BURKE D, TRIANTAFYLLOU M. Massachusetts Institute of Technology opencourseware:2.611/2.612 Marine power and propulsion[OL]. (2006-07-23)[2023-01-03]. https://ocw.mit.edu/courses/2-611-marine-power-and-propulsion-fall-2006/.
[1] 李新新, 杜祥宁, 李远哲, 曹恒超, 田煜. 基于AVL-EXCITE的发动机连杆轴承空化特性模拟[J]. 清华大学学报(自然科学版), 2022, 62(3): 385-390,399.
[2] 张兴昊, 林丹彤, 胡黎明. 基于等效孔隙网络模型的水动力弥散数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(12): 1906-1914.
[3] 姚志峰, 赖桂桦, 刘婧, 曾永顺. 前缘空化对弹性水翼振动特性影响数值模拟[J]. 清华大学学报(自然科学版), 2021, 61(11): 1325-1333.
[4] 徐志, 马静, 王浩, 赵建世, 胡雅杰, 杨贵羽. 长江口影响水资源承载力关键指标与临界条件[J]. 清华大学学报(自然科学版), 2019, 59(5): 364-372.
[5] 杨飞, 傅旭东. 垂向基于谱方法的三维弯道水流模型[J]. 清华大学学报(自然科学版), 2018, 58(10): 914-920.
[6] 赵富龙, 薄涵亮, 刘潜峰. 压力变化条件下静止液滴相变模型[J]. 清华大学学报(自然科学版), 2016, 56(7): 759-764,771.
[7] 刘荣华, 魏加华, 翁燕章, 王光谦, 唐爽. HydroMP:基于云计算的水动力学建模及计算服务平台[J]. 清华大学学报(自然科学版), 2014, 54(5): 575-583.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn