Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (2): 318-336    DOI: 10.16511/j.cnki.qhdxxb.2023.26.047
  航天航空工程 本期目录 | 过刊浏览 | 高级检索 |
发汗冷却技术在飞行器上的应用及展望
陈忠灿1,2, 张凯1, 李枫1, 赵月1, 武健辉1, 贺棋楝1, 陈民2
1. 中国运载火箭技术研究院, 北京 100076;
2. 清华大学 航天航空学院, 北京 100084
Application and research progress of transpiration cooling technology in flight vehicles
CHEN Zhongcan1,2, ZHANG Kai1, LI Feng1, ZHAO Yue1, WU Jianhui1, HE Qilian1, CHEN Min2
1. China Academy of Launch Vehicle Technology, Beijing 100076, China;
2. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(18429 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 随着高焓、长时间热环境下飞行器热防护技术需求提升,新型空天飞行器亟待发展更高效的热防护技术。发汗冷却技术具有防热效率高、不改变结构雏形等优点,应用前景广阔。该文探讨了发汗冷却技术应用于飞行器热防护的优势和挑战,从性能评估快速计算、流动传热数值仿真、冷却机理与性能考核实验、效能最优控制算法和应用结构型式优化等方面进行了综述,总结了发汗冷却技术的研究现状和最新进展,分析了当前研究存在的问题,并给出了建议。系统复杂、冷却剂输运不均、工作过程不易稳定控制和建立高精度预测模型难度大是发汗冷却技术用于飞行器热防护时存在的难点。现有研究存在预测模型适用范围有限与准确度较低、实验测量手段单一、控制策略难以实现系统最优和新型结构方法缺乏工程细化方案等不足。微/介观尺度精细化数值计算模型、先进可视化实验测试手段、快速响应精确控制策略、自驱动与自适应结构工程化方案和主被动组合式热防护是后续研究的重点方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈忠灿
张凯
李枫
赵月
武健辉
贺棋楝
陈民
关键词 发汗冷却技术主动热防护飞行器多孔介质    
Abstract:[Significance] Aerospace vehicles have undergone significant modifications in terms of aerodynamic shape, flight speed, flight environment, and flight duration compared with conventional flight vehicles. They must withstand harsh aerodynamic thermal environments for long durations and maintain a sharp leading-edge shape with a high lift-to-drag ratio, imposing extremely stringent requirements on the temperature resistance, durability, structural efficiency, and reliability of the thermal protection system. Traditional thermal protection depends largely on passive methods such as heat insulation, heat sink, and radiation heat dissipation. Although the thermal protection performance of related technologies has improved, which is restricted by several constraints, such as ensuring that the prototype is safe under harsh conditions of extremely high heat flux and ultrahigh temperature along with structural stability, long-term operation, light-weight nature, and repeatability. Thus, a new active thermal protection technology is necessary. In this context, transpiration cooling technology offers the advantage of high thermal efficiency without requiring any changes in the prototype of a vehicle. It has been widely considered a potential active thermal protection technology. However, when transpiration cooling is used for thermal protection of a flight vehicle, some challenges related to the complexity of the system, a mismatch between coolant supply and demand, unstable control of the operation, and development of a high-precision prediction model etc., arise. [Progress] Research on transpiration cooling primarily focused on quick evaluation of performance, numerical simulation of flow and heat transfer, evaluation of cooling mechanism performance, development of optimal control algorithm for efficiency, and optimization of structure form and yielded beneficial results. However, several fundamental scientific issues needed to be urgently addressed to fully realize the engineering application of this technology in aerospace vehicles. In the context of numerical simulation, the accuracy and adaptability of the heat and mass transfer model should be improved. Most existing studies had mathematically described and solved the physical process of heat and mass transfer in porous media at the macroscale. But some parameters related to specific phase change heat and mass transfer (such as evaporation/condensation coefficient and fluid-solid convection heat transfer coefficient) that affect the model's accuracy must be modified through experiments, and the adaptation was partially successful. Most existing models assumed that the temperature of porous media, liquid phases, and gas phases were equal. Although a few models explored the nonequilibrium effect between porous media and fluids, they did not consider the nonequilibrium effect between gas and liquid phases. There were few flight experiments in the research and a large gap between the ground experimental test and practical use conditions. Furthermore, extreme effects related to high-temperature, real, and rarefied gases and shock wave/boundary layer interference during high-speed flight could not be effectively reproduced on the ground. Moreover, there was a lack of experimental data that could be used to verify the accuracy of the heat and mass transfer model. The experimental test method was relatively simple, and the flow and heat transfer process of the liquid in the porous medium could not be obtained. It was challenging to effectively obtain the boundary layer flow law of the liquid when it entered the high-speed mainstream flow from the porous medium. In terms of control strategy, the present research on transpiration cooling control systems lacked a transient simplified mathematical model that could be quickly established, particularly for liquid phase change transpiration cooling with the multiphase flow and phase change process. Simultaneously, there were few transpiration cooling control systems with practical engineering values based on modern control theory, which made it difficult to achieve optimal performance in practical engineering applications. Some adaptive and self-driven transpiration cooling systems had been proposed as new forms of transpiration cooling structures; however, they were still at the mechanism verification stage, and the engineering application effect needed to be verified. [Conclusions and Prospects] Follow-up research will focus on the micro/mesoscale fine numerical calculation model, advanced visual experimental testing methods, rapid response-precise control strategies, self-driven and adaptive structural engineering systems, and combined active and passive thermal protection.
Key wordstranspiration cooling technology    active thermal protection    flight vehicle    porous medium
收稿日期: 2023-04-23      出版日期: 2023-12-28
ZTFLH:  TK124  
基金资助:国家自然科学基金面上项目(52276169)
通讯作者: 陈民,教授,E-mail:mchen@tsinghua.edu.cn     E-mail: mchen@tsinghua.edu.cn
作者简介: 陈忠灿(1990-),男,博士研究生,工程师。
引用本文:   
陈忠灿, 张凯, 李枫, 赵月, 武健辉, 贺棋楝, 陈民. 发汗冷却技术在飞行器上的应用及展望[J]. 清华大学学报(自然科学版), 2024, 64(2): 318-336.
CHEN Zhongcan, ZHANG Kai, LI Feng, ZHAO Yue, WU Jianhui, HE Qilian, CHEN Min. Application and research progress of transpiration cooling technology in flight vehicles. Journal of Tsinghua University(Science and Technology), 2024, 64(2): 318-336.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2023.26.047  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I2/318
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] 王长青. 空天飞行技术创新与发展展望[J]. 宇航学报, 2021, 42(7):807-819. WANG C Q. Technological innovation and development prospect of aerospace vehicle [J]. Journal of Astronautics, 2021, 42(7):807-819. (in Chinese)
[2] UYANNA O, NAJAFI H. Thermal protection systems for space vehicles:A review on technology development, current challenges and future prospects [J]. Acta Astronautica, 2020, 176:341-356.
[3] 胥蕊娜, 李晓阳, 廖致远, 等. 航天飞行器热防护相变发汗冷却研究进展[J]. 清华大学学报(自然科学版), 2021, 61(12):1341-1352. XU R N, LI X Y, LIAO Z Y, et al. Research progress in transpiration cooling with phase change [J]. Journal of Tsinghua University (Science & Technology), 2021, 61(12):1341-1352. (in Chinese)
[4] 栾芸, 贺菲, 王建华. 临近空间飞行器发汗冷却研究进展[J]. 推进技术, 2023, 44(1):22010020. LUAN Y, HE F, WANG J H. Review on transpiration cooling for near-space aircraft [J]. Journal of Propulsion Technology, 2023, 44(1):22010020. (in Chinese)
[5] 周子鹤. 发散冷却系统瞬态特性与最优控制研究[D]. 合肥:中国科学技术大学, 2021. ZHOU Z H. Investigations on transient characteristics and optimal control of transpiration cooling system [D]. Hefei:University of Science and Technology of China, 2021. (in Chinese)
[6] 钱康. 基于气膜/发散的复合冷却系统耦合传热分析[D]. 合肥:中国科学技术大学, 2021. QIAN K. Conjugate heat transfer in the composite cooling system based on the film/transpiration [D]. Hefei:University of Science and Technology of China, 2021. (in Chinese)
[7] 苏浩. 发散冷却系统冷却能力和流动换热特性的数值研究[D]. 合肥:中国科学技术大学, 2020. SU H. Numerical investigations on the cooling capacity and characteristics of flow and heat transfer of transpiration cooling [D]. Hefei:University of Science and Technology of China, 2020. (in Chinese)
[8] 丁锐. 发散冷却在高超声速飞行器上的应用可行性研究[D]. 合肥:中国科学技术大学, 2020. DING R. Investigations on the application feasibility of transpiration cooling on hypersonic vehicles [D]. Hefei:University of Science and Technology of China, 2020. (in Chinese)
[9] 伍楠. 发散冷却关键问题的实验和数值研究[D]. 合肥:中国科学技术大学, 2019. WU N. Experimental and numerical investigations on the key problems of transpiration cooling [D]. Hefei:University of Science and Technology of China, 2019. (in Chinese)
[10] 董文杰. 发散冷却基础问题的理论与数值研究[D]. 合肥:中国科学技术大学, 2018. DONG W J. Theoretical and numerical investigations on basic problems of transpiration cooling [D]. Hefei:University of Science and Technology of China, 2018. (in Chinese)
[11] 林佳. 气动热及发散冷却研究[D]. 合肥:中国科学技术大学, 2014. LIN J. Study of aero-thermodynamics and transpiration cooling [D]. Hefei:University of Science and Technology of China, 2014. (in Chinese)
[12] 贺菲. 发散冷却基础问题的理论和实验研究[D]. 合肥:中国科学技术大学, 2014. HE F. Theoretical and experimental investigations on basic problems of transpiration cooling [D]. Hefei:University of Science and Technology of China, 2014. (in Chinese)
[13] 丁亮. 烧结多孔介质材料发汗冷却的研究[D]. 合肥:中国科学技术大学, 2012. DING L. Investigation on transpiration cooling within sintered porous material [D]. Hefei:University of Science and Technology of China, 2012. (in Chinese)
[14] 时骏祥. 发散冷却基础问题的理论研究[D]. 合肥:中国科学技术大学, 2009. SHI J X. Theoretic investigation on basic problems of transpiration cooling [D]. Hefei:University of Science and Technology of China, 2009. (in Chinese)
[15] WEINBAUM S, WHEELER H L J R. Heat transfer in sweat-cooled porous metals [J]. Journal of Applied Physics, 1949, 20(1):113-122.
[16] REGAN R E. Characterization of porous metal matrices for transpiration cooled structures [R]. Washington, DC:Boeing, 1970.
[17] EGAN R E R. Characterization of porous powder metal matrices for transpiration cooled structure [R]. Washington, DC:Boeing, 1971.
[18] DUNAVANT J C, EVERHART P E. Exploratory heat-transfer measurements at Mach 10 on a 7.5 total-angle cone downstream of a region of air and helium transpiration cooling [R]. Washington, DC:Boeing, 1969.
[19] RANNIE J B. Investigation of methods for transpiration cooling liquid rocket chambers final report [R]. Florida:Pratt & Whitney Aircraft, 1969.
[20] GLASS D E, DILLEY A D, KELLY H N. Numerical analysis of convection transpiration cooling [R]. Hampton:Langley Research Center, 1999.
[21] VALLER H W. Performance of a transpiration-regenerative cooled rocket thrust chamber [R]. Cleveland:Lewis Research Center, 1979.
[22] HOWE J T. Some finite difference solutions of the laminar compressible boundary layer showing the effects of upstream transpiration cooling [R]. Moffett Field:Ames Research Center, 1959.
[23] ZHANG S L, LI X, ZUO J Y, et al. Research progress on active thermal protection for hypersonic vehicles [J]. Progress in Aerospace Sciences, 2020, 119:100646.
[24] GLASS D. Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles [C]//15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton, USA:American Institute of Aeronautics and Astronautics, 2008:2682.
[25] 李锋. 疏导式热防护[M]. 北京:中国宇航出版社, 2017. LI F. Leading thermal protection [M]. Beijing:China Aerospace Publishing House, 2017. (in Chinese)
[26] 肖雪峰. 发汗冷却传热特性及边界层流动规律研究[D]. 哈尔滨:哈尔滨工业大学, 2019. XIAO X F. Study on heat transfer and boundary layer flow of transpiration cooling [D]. Harbin:Harbin Institute of Technology, 2019. (in Chinese)
[27] WANG J H, MESSNER J, STETTER H. An experimental investigation on transpiration cooling Part Ⅱ:Comparison of cooling methods and media [J]. International Journal of Rotating Machinery, 2004, 10(5):355-363.
[28] TOBIAS S. System studies on active thermal protection of a hypersonic suborbital passenger transport vehicle [C]//19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Atlanta, USA:American Institute of Aeronautics and Astronautics, 2014:2372.
[29] 黄干. 高温与超声速条件下单相及相变发汗冷却规律研究[D]. 北京:清华大学, 2018. HUANG G. Research on the single-phased and phase-changed transpiration cooling in supersonic and high temperature flow [D]. Beijing:Tsinghua University, 2018. (in Chinese)
[30] VAN FOREEST A, SIPPEL M, KLEVANSKI J, et al. Transpiration cooling to handle the aerothermodynamic challenges of the spaceliner concept [C]//2nd European Conference for Aerospace Science.Brussels, Belgium:The European Conference for Aerospace Sciences Association, 2007:22500038.
[31] ZHAO B, LI K Y, WANG Y P, et al. Theoretical analysis of convective heat flux structure in the incompressible turbulent boundary layer on a porous plate with uniform injection and suction [J]. International Journal of Thermal Sciences, 2022, 171:107264.
[32] RANNIE W D, DUNN L G, MILLIKAN C B. A simplified theory of porous wall cooling [R]. Pasadena:Jet Propulsion Laboratory, 1947.
[33] ECKERT E R G, LIVINGOOD N B. Comparison of effectiveness of convection-, transpiration-, and film-cooling methods with air as coolant [R]. Cleveland:Lewis Research Center, 1954.
[34] KAYS W M C, CRAWFORD M E, WEIGAND B. Convective heat and mass transfer [M]. 4th ed. Boston:McGraw-Hill, 2004.
[35] 钱学森. 星际航行概论[M]. 北京:中国宇航出版社, 2008. QIAN X S. An introduction to space flight [M]. Beijing:China Astronautic Publishing House, 2008. (in Chinese)
[36] BÖHRK H. Transpiration-cooled hypersonic flight experiment:Setup, flight measurement, and reconstruction [J]. Journal of Spacecraft and Rockets, 2015, 52(3):674-683.
[37] ZHANG Z H, SUN X C, WANG X, et al. Flow structure and heat transfer of transpiration cooling by using a LBM:The effects of wall blowing and spatially nonuniform injection [J]. International Communications in Heat and Mass Transfer, 2021, 127:105491.
[38] 欧阳小龙. 多孔介质传热局部非热平衡效应的基础问题研究[D]. 北京:清华大学, 2014. OUYANG X L. Research on the local thermal non-equilibrium effect for heat transfer in porous media [D]. Beijing:Tsinghua University, 2014. (in Chinese)
[39] ALAZMI B, VAFAI K. Analysis of variants within the porous media transport models [J]. Journal of Heat Transfer, 2000, 122(2):303-326.
[40] ABRIOLA L M, PINDER G F. A multiphase approach to the modeling of porous media contamination by organic compounds:1. Equation development [J]. Water Resources Research, 1985, 21(1):11-18.
[41] HE F, DONG W J, WANG J H, et al. Transient model and its application to investigate the injection mode and periodical operation of transpiration cooling with liquid coolant phase change [J]. Applied Thermal Engineering, 2020, 181:115956.
[42] WANG M, WANG J H, PU J, et al. Transient heat dissipation performances of transpiration cooling with coolant phase change [J]. International Communications in Heat and Mass Transfer, 2022, 135:106082.
[43] HE F, WANG J H, XU L C, et al. Modeling and simulation of transpiration cooling with phase change [J]. Applied Thermal Engineering, 2013, 58(1-2):173-180.
[44] WANG C Y, BECKERMANN C. A two-phase mixture model of liquid-gas flow and heat transfer in capillary porous media:Ⅰ. Formulation [J]. International Journal of Heat and Mass Transfer, 1993, 36(11):2759-2768.
[45] WANG C Y, BECKERMANN C. A two-phase mixture model of liquid-gas flow and heat transfer in capillary porous media:Ⅱ. Application to pressure-driven boiling flow adjacent to a vertical heated plate [J]. International Journal of Heat and Mass Transfer, 1993, 36(11):2759-2768.
[46] LIU T L, SU H, CHEN Z W, et al. Numerical investigation on the transient transport and heat transfer characteristics of transpiration cooling with liquid phase change during coolant adjustment [J]. Applied Thermal Engineering, 2022, 209:118277.
[47] SU H, HE F, WANG J H, et al. Numerical investigation on the effects of porous cone parameters on liquid transpiration cooling performance [J]. International Journal of Thermal Sciences, 2021, 161:106743.
[48] CHEN Y, DU S, LI D, et al. Numerical investigation of transient phase-change transpiration cooling based on variable properties of coolant [J]. Applied Thermal Engineering, 2021, 184:116204.
[49] HU H W, JIANG P X, OUYANG X L, et al. A modified energy equation model for flow boiling in porous media and its application to transpiration cooling at low pressures with transient effect [J]. International Journal of Heat and Mass Transfer, 2020, 158:119745.
[50] DONG W J, WANG J H, CHEN S Y, et al. Modelling and investigation on heat transfer deterioration during transpiration cooling with liquid coolant phase-change [J]. Applied Thermal Engineering, 2018, 128:381-392.
[51] LEE D Y, VAFAI K. Analytical characterization and conceptual assessment of solid and fluid temperature differentials in porous media [J]. International Journal of Heat and Mass Transfer, 1999, 42(3):423-435.
[52] MARAFIE A, VAFAI K. Analysis of non-Darcian effects on temperature differentials in porous media [J]. International Journal of Heat and Mass Transfer, 2001, 44(23):4401-4411.
[53] WANG J H, SHI J X. Discussion of boundary conditions of transpiration cooling problems using analytical solution of ltne model [J]. Journal of Heat Transfer, 2008, 130(1):014504.
[54] 黄拯. 高温与超音速条件下发汗冷却基础问题研究[D]. 北京:清华大学, 2015. HUANG Z. Research on the transpiration cooling in supersonic and high temperature flow [D]. Beijing:Tsinghua University, 2015. (in Chinese)
[55] MINKOWYCZ W J, HAJI-SHEIKH A, VAFAI K. On departure from local thermal equilibrium in porous media due to a rapidly changing heat source:The Sparrow number [J]. International Journal of Heat and Mass Transfer, 1999, 42(18):3373-3385.
[56] WAKAO N. Particle-to-fluid transfer coefficients and fluid diffusivities at low flow rate in packed beds [J]. Chemical Engineering Science, 1976, 31(12):1115-1122.
[57] PALLARES J, GRAU F X. A modification of a Nusselt number correlation for forced convection in porous media [J]. International Communications in Heat and Mass Transfer, 2010, 37(9):1187-1190.
[58] ACHENBACH E. Heat and flow characteristics of packed beds [J]. Experimental Thermal and Fluid Science, 1995, 10(1):17-27.
[59] 胥蕊娜, 姜培学. 流体在微多孔介质内对流换热实验研究[J]. 工程热物理学报, 2008, 29(8):1377-1379. XU R N, JIANG P X. Experimental investigations of convection heat transfer in microporous media [J]. Journal of Engineering Thermophysics, 2008, 29(8):1377-1379. (in Chinese)
[60] XU R N, HUANG Y L, JIANG P X, et al. Internal heat transfer coefficients in microporous media with rarefaction effects [J]. Science China Technological Sciences, 2012, 55(10):2869-2876.
[61] BERTIN J J, CUMMINGS R M. Critical hypersonic aerothermodynamic phenomena [J]. Annual Review of Fluid Mechanics, 2006, 38(1):129-157.
[62] CHRISTOPHER N, PETER J M F, KLOKER M J, et al. DNS of turbulent flat-plate flow with transpiration cooling [J]. International Journal of Heat and Mass Transfer, 2020, 157:119972.
[63] CERMINARA A, DEITERDING R, SANDHAM N. A mesoscopic modelling approach for direct numerical simulations of transition to turbulence in hypersonic flow with transpiration cooling [J]. International Journal of Heat and Fluid Flow, 2020, 86:108732.
[64] LIU X, ZHOU W X, YU W L. Numerical simulation study of transpiration cooling with hydrocarbon fuel as coolant [J]. Applied Thermal Engineering, 2023, 221:119687.
[65] YANG Y, MAO J K, CHEN P T, et al. Numerical investigation on transpiration cooling performance with different porosities and mainstream pressure gradients [J]. International Journal of Thermal Sciences, 2023, 184:107991.
[66] JIANG P X, LIAO Z Y, HUANG Z, et al. Influence of shock waves on supersonic transpiration cooling [J]. International Journal of Heat and Mass Transfer, 2019, 129:965-974.
[67] YANG L, MIN Z, YUE T W, et al. High resolution cooling effectiveness reconstruction of transpiration cooling using convolution modeling method [J]. International Journal of Heat and Mass Transfer, 2019, 133:1134-1144.
[68] YANG L, CHEN W, CHYU M K. A convolution modeling method for pore plugging impact on transpiration cooling configurations perforated by straight holes [J]. International Journal of Heat and Mass Transfer, 2018, 126:1057-1066.
[69] XIAO X F, ZHAO G B, ZHOU W X, et al. Large-eddy simulation of transpiration cooling in turbulent channel with porous wall [J]. Applied Thermal Engineering, 2018, 145:618-629.
[70] HUANG Z, ZHU Y H, XIONG Y B, et al. Investigation of transpiration cooling for sintered metal porous struts in supersonic flow [J]. Applied Thermal Engineering, 2014, 70(1):240-249.
[71] DING R, WANG J H, HE F, et al. Numerical investigation on a double layer combined cooling structure for aerodynamic heat control of hypersonic vehicle leading edge [J]. Applied Thermal Engineering, 2020, 169:114949.
[72] SU H, WANG J H, HE F, et al. Numerical investigation on transpiration cooling with coolant phase change under hypersonic conditions [J]. International Journal of Heat and Mass Transfer, 2019, 129:480-490.
[73] SU H, HE F, WANG J H, et al. Numerical investigation on the characteristics of coolant flow, heat absorption and phase change in transpiration cooling process [J]. International Journal of Thermal Sciences, 2019, 142:68-76.
[74] XIAO X F, ZHAO G B, ZHOU W X. Numerical investigation of transpiration cooling for porous nose cone with liquid coolant [J]. International Journal of Heat and Mass Transfer, 2018, 121:1297-1306.
[75] BETCHEN L, STRAATMAN A, THOMPSON B. A nonequilibrium finite-volume model for conjugate fluid/porous/solid domains [J]. Numerical Heat Transfer:Part A:Applications, 2006, 49(6):543-565.
[76] OCHOA-TAPIA J A, WHITAKER S. Momentum jump condition at the boundary between a prous medium and a homogeneous fluid:Inertial effects [J]. Journal of Porous Media, 1998(1):201-217.
[77] BEAVERS G S, JOSEPH D D. Boundary conditions at a naturally permeable wall [J]. Journal of Fluid Mechanics, 1967, 30(1):197-207.
[78] PHANIKUMAR M S, MAHAJAN R L. Non-Darcy natural convection in high porosity metal foams [J]. International Journal of Heat and Mass Transfer, 2002, 45(18):3781-3793.
[79] VON WOLFERSDORF J. Effect of coolant side heat transfer on transpiration cooling [J]. Heat and Mass Transfer, 2005, 41(4):327-337.
[80] KOVENSKII V I, TEPLITSKII Y S. Modelling of heat transfer in an infiltrated granular bed in view of the difference of phase temperatures [J]. International Journal of Heat and Mass Transfer, 2006, 49(1-2):359-365.
[81] 陈新. 基于石英灯阵列的大梯度变化热环境模拟试验设计方法[D]. 哈尔滨:哈尔滨工业大学, 2021. CHEN X. Experiment design method for large gradient thermal environment employing quartz lamp array [D]. Harbin:Harbin Institute of Technology, 2021. (in Chinese)
[82] 吴亚东, 朱广生, 高波, 等. 多孔介质相变发汗冷却主动热防护试验研究[J]. 宇航学报, 2017, 38(2):212-218. WU Y D, ZHU G S, GAO B, et al. An experimental study on the phase-changed transpiration cooling for active thermal protection [J]. Journal of Astronautics, 2017, 38(2):212-218. (in Chinese)
[83] 陈星宇, 王丽燕, 陈伟华, 等. 真空条件下多孔平板发汗冷却试验研究[J]. 北京航空航天大学学报, 2021, 47(8):1594-1604. CHEN X Y, WANG L Y, CHEN W H, et al. Transpiration cooling test of porous plate in vacuum environment [J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8):1594-1604. (in Chinese)
[84] 熊宴斌. 超声速主流条件发汗冷却的流动和传热机理研究[D]. 北京:清华大学, 2013. XIONG Y B. Study of the mechanism of flow and heat transfer on supersonic transpiration cooling [D]. Beijing:Tsinghua University, 2013. (in Chinese)
[85] BÖHRK H. Transpiration cooling at hypersonic flight:AKTIV on SHEFEX Ⅱ [C]//11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Atlanta, USA:AIAA, 2014:2676.
[86] GVLHAN A, SIEBE F, THIELE T, et al. Sharp edge flight experiment-Ⅱ instrumentation challenges and selected flight data [J]. Journal of Spacecraft and Rockets, 2014, 51(1):175-186.
[87] TURNER J, ETTL J, HÖRSCHGEN-EGGERS M, et al. SHEFEX Ⅱ vehicle and subsystem design, flight performance and their application to future hypersonic missions [C]//21st ESA Symposium on European Rocket and Balloon Programmes and Related Research. Noordwijk, The Netherlands:ESA Communication Production Office, 2013:285968932.
[88] HENDRIK W. Sounding rockets for entry research:SHEFEX flight test program [C]//Proceedings of the 21st ESA Symposium on Rocket and Balloon Programmes. Thun, Schweiz:ESA Communications, 2013:143-152.
[89] DITTERT C. Wall thickness optimization of a transpiration-cooled sharp leading edge at atmospheric re-entry [C]//5th International Conference on Porous Media and Their Applications in Science, Engineering and Industry. Kona, USA:ICPM, 2014:1-7.
[90] 杨学实. 热防护发汗冷却控制[J]. 自动化学报, 1985, 11(4):345-350. YANG X S. Transpiration cooling control of thermal protection [J]. Acta Automatica Sinica, 1985, 11(4):345-350. (in Chinese)
[91] 杨学实, 王侠超. 发汗控制动态响应数值分析[J]. 自动化学报, 1988, 14(3):184-190. YANG X S, WANG X C. A numerical analysis of dynamic responses for transpiration control [J]. Acta Automatica Sinica, 1988, 14(3):184-190. (in Chinese)
[92] 杨学实, 王侠超, 汤存亮, 等. 关于水发汗控制及实验方案研究[J]. 系统工程与电子技术, 1990(3):19-27. YANG X S, WANG X C, TANG C L, et al. Investigation of transpiration control with water and its experimental plan [J]. Systems Engineering and Electronics, 1990(3):19-27. (in Chinese)
[93] 杨学实. 水发汗温度场控制[J]. 自动化学报, 1991, 17(4):385-394. YANG X S. Transpiration control with water for temperature field [J]. Acta Automatica Sinica, 1991, 17(4):385-394. (in Chinese)
[94] 杨学实, 高伟, 袁兆鼎, 等. 关于烧蚀发汗控制方程及其数学仿真[J]. 系统工程与电子技术, 1992(7):56-67. YANG X S, GAO W, YUAN Z D, et al. Governing equation and mathematical simulation on ablation and transpiration control [J]. Systems Engineering and Electronics, 1992(7):56-67. (in Chinese)
[95] 杨学实, 袁兆鼎, 徐燕侯. 二维动边界发汗控制数学仿真研究[J]. 自动化学报, 1993, 19(4):393-403. YANG X S, YUAN Z D, XU Y H. A mathematical simulation research of two-dimensional transpiration control with moving-boundary [J]. Acta Automatica Sinica, 1993, 19(4):393-403. (in Chinese)
[96] 杨学实, 于景元, 朱广田. 活动边界分布参数系统控制研究的新进展[J]. 控制与决策, 1993, 8(5):321-329, 388. YANG X S, YU J Y, ZHU G T. Recent advances on research in distributed parameter system control with moving boundary [J]. Control and Decision, 1993, 8(5):321-329, 388. (in Chinese)
[97] 高伟, 杨学实. 发汗控制方程的数学求解[J]. 计算物理, 1991, 8(2):165-173. GAO W, YANG X S. Mathematical solution of transpiration control equation [J]. Chinese Journal of Computational Physics, 1991, 8(2):165-173. (in Chinese)
[98] 徐燕侯, 吴广钰, 弓广辉, 等. 旋成体表面防热的发汗冷却控制及其数值模拟[J]. 计算物理, 1995, 12(1):71-72. XU Y H, WU G Y, GONG G H, et al. The transpiration cooling control and it's numerical simulation of surface thermal protection for bodies of revolution [J]. Chinese Journal of Computational Physics, 1995, 12(1):71-72. (in Chinese)
[99] 孙冀, 杨学实, 刘火林. 变域传热发汗控制理论研究综述[J]. 控制与决策, 2006, 21(7):721-725, 729. SUN J, YANG X S, LIU H L. A survey of variable domain transpiration control theory [J]. Control and Decision, 2006, 21(7):721-725, 729. (in Chinese)[WX)] [WX(3KG0,25*2]
[100] 朱聪超, 秦世引, 杨学实. 最小发汗量冷却系统的PID进化控制策略和实现算法[J]. 宇航学报, 2008, 29(4):1336-1340. ZHU C C, QIN S Y, YANG X S. PID evolutionary control strategy and implementing algorithm to minimize coolant consumption in transpiration cooling system [J]. Journal of Astronautics, 2008, 29(4):1336-1340. (in Chinese)
[101] DING R, WANG J H, HE F, et al. Numerical investigation on the performances of porous matrix with transpiration and film cooling [J]. Applied Thermal Engineering, 2019, 146:422-431.
[102] WU N, WANG J H, HE F, et al. Optimization transpiration cooling of nose cone with non-uniform permeability [J]. International Journal of Heat and Mass Transfer, 2018, 127:882-891.
[103] HUANG G, LIAO Z Y, XU R N, et al. Self-pumping transpiration cooling with a protective porous armor [J]. Applied Thermal Engineering, 2020, 164:114485.
[104] DONG W J, DENG P G, LIN S Y, et al. Numerical study of a new scheme of self-adaptive transpiration cooling [J]. Applied Thermal Engineering, 2023, 230:120779.
[105] 栾芸. 发散冷却及其内冷流道的机理和结构优化设计研究[D]. 合肥:中国科学技术大学, 2022. LUAN Y. Investigations on mechanism and structural optimization design of transpiration cooling and internal cooling passage [D]. Hefei:University of Science and Technology of China, 2022. (in Chinese)
[106] 刘双. 高超声速飞行器热防护系统主动冷却机制与效能评估[D]. 哈尔滨:哈尔滨工业大学, 2010. LIU S. Active cooling mechanism and cooling capacity evaluation of thermal protection systems for hypersonic vehicle [D]. Harbin:Harbin Institute of Technology, 2010. (in Chinese)
[107] LÜ Y M, LIU T L, HUANG X, et al. Numerical investigation and optimization of flat plate transpiration-film combined cooling structure [J]. International Journal of Thermal Sciences, 2022, 179:107673.
[108] SHEN B X, YIN L, LIU H P, et al. Thermal protection characteristics for a combinational opposing jet and platelet transpiration cooling nose-tip [J]. Acta Astronautica, 2019, 155:143-152.
[109] SHEN B X, YIN L, ZHANG X L, et al. Investigation on cooling effect with a combinational opposing jet and platelet transpiration concept in hypersonic flow [J]. Aerospace Science and Technology, 2019, 85:399-408.
[110] SHEN B X, LIU W Q. Insulating and absorbing heat of transpiration in a combinational opposing jet and platelet transpiration blunt body for hypersonic vehicle [J]. International Journal of Heat and Mass Transfer, 2019, 138:314-325.
[111] SHEN B X, LIU W Q. Effect of hot fuel gas on a combinational opposing jet and platelet transpiration thermal protection system [J]. Applied Thermal Engineering, 2020, 164:114513.
[112] COLWELL G T, MODLIN J M. Heat pipe and surface mass transfer cooling of hypersonic vehicle structures [J]. Journal of Thermophysics and Heat Transfer, 1992, 6(3):492-499.
[113] WANG D, PAN K, LI J G, et al. Numerical investigation on the characteristics of cavity-transpiration combined cooling for hypersonic vehicle leading edge [J]. Applied Thermal Engineering, 2023, 226:120275.
[1] 李顺洋, 万力, 桂南, 杨星团, 屠基元, 姜胜耀. 基于弹塑性接触和渗流模型的静密封泄漏计算[J]. 清华大学学报(自然科学版), 2023, 63(8): 1264-1272.
[2] 陈长坤, 石朗, 鲍益朋, 张宇伦. 高闪点液体燃料浸润多孔介质砂床火蔓延行为实验研究[J]. 清华大学学报(自然科学版), 2023, 63(10): 1493-1501.
[3] 张兴昊, 林丹彤, 胡黎明. 基于等效孔隙网络模型的水动力弥散数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(12): 1906-1914.
[4] 朱炳聿, 丁青青. 核动力对无人航空飞行器续航能力提升研究[J]. 清华大学学报(自然科学版), 2021, 61(11): 1295-1300.
[5] 宋佳, 石若凌, 郭小红, 刘杨. 基于核极限学习机的飞行器故障诊断方法[J]. 清华大学学报(自然科学版), 2020, 60(10): 795-803.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn