Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2024, Vol. 64 Issue (8): 1391-1400    DOI: 10.16511/j.cnki.qhdxxb.2024.27.009
  航空航天与工程力学 本期目录 | 过刊浏览 | 高级检索 |
基于尾流降阶模型的涡激振动俘能效率优化研究
韩鹏1, 黄桥高2, 秦登辉3, 潘光2
1. 清华大学 航天航空学院, 北京 100084;
2. 西北工业大学 航海学院, 西安 710012;
3. 北京大学 工学院, 北京 100871
Energy harvesting efficiency from fluid flow by vortex-induced vibrations: reduced-order modeling
HAN Peng1, HUANG Qiaogao2, QIN Denghui3, PAN Guang2
1. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China;
2. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China;
3. College of Engineering, Peking University, Beijing 100871, China
全文: PDF(7027 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 涡激振动(VIV)是一种典型的流固耦合(FSI)现象,除了在结构安全设计方面有重要意义外,近年来在流体动能俘获方向也展现出巨大潜力。该文采用一种基于尾流振子的低成本降阶模型(ROM),以及一种基于直接模拟的计算流体力学—流固耦合(CFD-FSI)求解器,对圆柱VIV俘能效率的全局优化问题展开研究。通过ROM模型,得到了四组不同质量比和Reynolds数下的高分辨率俘能效率优化数据,其中优化参数为阻尼比和折合速度。将ROM模型的预测结果,与CFD-FSI的高保真模拟结果和已有研究中的实测数据进行对比,验证了ROM的有效性。该文发现了最优俘能效率点受到折合速度和质量—阻尼耦合参数的控制;另外,从ROM模型的内在关键参数推论出VIV俘能设备更适于在相应结构固定绕流升力系数更高的流动条件下工作,由此解释了高Reynolds数条件下VIV俘能效率更高的现象;此外,优化结果表明低质量比条件下的VIV俘能设备工作表现更优,由此证明海流能VIV俘能收益高于风能VIV收益。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩鹏
黄桥高
秦登辉
潘光
关键词 流固耦合涡激振动流体动能俘获降阶模型    
Abstract:[Objective] Vortex-induced vibration (VIV) is a well-known fluid-structure interaction phenomenon that holds promising potential for harnessing energy from fluid flows. The pursuit of optimizing energy conversion efficiency from VIV has garnered significant interest. However, considerable challenges, such as the costs of experiments and computational fluid dynamics (CFD) simulations, pose significant hurdles in conducting comprehensive global optimization studies on efficiency. [Methods] In response to these challenges, this study employs a reduced-order model (ROM) based on a wake oscillator. The ROM is used to compute and optimize the energy harvesting efficiency from the VIV of a circular cylinder. The rapid computational capabilities of the ROM allow the creation of high-resolution efficiency maps across various mass ratios and Reynolds numbers. These maps encompass a broad spectrum of incoming velocities and damping ratios. They not only provide valuable insights into achieving maximum efficiency but also detailed information on the optimal damping ratio and velocity. To validate the predictions of the ROM, comparisons are drawn against experiments and CFD simulations. For cases with high Reynolds numbers (high-Re), the ROM is validated using published experimental data. Conversely, for low-Re cases where experimental data is sparse, a computational fluid-structure interaction solver, named CFD-FSI, is utilized. This tool relies on direct simulations to verify the ROM results. Despite some differences observed between the ROM, experimental outcomes, and CFD data, this study demonstrates that the maximum efficiency and its occurrence conditions predicted by the ROM are acceptable. With its cost-effectiveness, the ROM emerges as a valuable tool for investigating optimal energy harvesting efficiency and providing insights into related engineering aspects. [Results] Overall, the main findings of this study can be summarized as follows: 1) This study contributes high-resolution global optimization maps for energy harvesting efficiency from VIV, focusing on the optimization parameters of reduced velocities and damping ratios. Additionally, it offers a cost-effective approach and solution through the use of ROM. This method seeks to achieve a high efficiency from VIV across a large number of tested cases. 2) The maximum efficiency point is found to be influenced by the incoming velocity and the product of the mass ratio and damping ratio. This implies that if fluid flow conditions, such as the Reynolds number, remain constant, the global maximum efficiency remains consistent across different VIV energy converters despite having various structural configurations. Additionally, for different VIV energy converters, the product of the mass and the optimal damping ratio, where the global maximum efficiency occurs, tends to be similar. 3) Efficiency at a high Reynolds number is shown to surpass that at Re=150 in laminar flows. This is primarily attributed to differences in lift coefficients and Strouhal numbers between high- and low-Reynolds flows. From the perspective of the ROM, a high lift coefficient might contribute to a higher converted efficiency. [Conclusions] Considering the definition of the mass ratio, the study suggests that the energy harvesting efficiency of a lighter system is more robust than that of a system with a high mass ratio. This indicates potential advantages for ocean VIV energy converters over wind VIV energy converters. Furthermore, the present work provides an effective tool to predict, analyze and optimize the energy harvesting efficiency from VIV, which would be helpful for related engineering design and future studies on this topic.
Key wordsfluid-structure interaction    vortex-induced vibration (VIV)    energy harvesting    reduced-order model
收稿日期: 2023-11-27      出版日期: 2024-07-19
基金资助:国家自然科学基金青年项目(12302317)、重大研究计划重点项目(92252204);中国博士后科学基金面上项目(2023M741883);国家重点研发计划(2022YFC2805200)、国家资助博士后研究人员计划(GZB20230322)
引用本文:   
韩鹏, 黄桥高, 秦登辉, 潘光. 基于尾流降阶模型的涡激振动俘能效率优化研究[J]. 清华大学学报(自然科学版), 2024, 64(8): 1391-1400.
HAN Peng, HUANG Qiaogao, QIN Denghui, PAN Guang. Energy harvesting efficiency from fluid flow by vortex-induced vibrations: reduced-order modeling. Journal of Tsinghua University(Science and Technology), 2024, 64(8): 1391-1400.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2024.27.009  或          http://jst.tsinghuajournals.com/CN/Y2024/V64/I8/1391
[1] PAÏDOUSSIS M P, PRICE S J, DE LANGRE E. Fluid-structure interactions:Cross-flow-induced instabilities[M]. Cambridge:Cambridge University Press, 2010.
[2] 闵刚,薄涵亮,姜胜耀,等.板状燃料组件流致振动实验研究[J].清华大学学报(自然科学版), 2004, 44(3):350-353. MIN G, BO H L, JIANG S Y, et al. Flow-induced vibrations in parallel-plate fuel assemblies[J]. Journal of Tsinghua University (Science and Technology), 2004, 44(3):350-353.(in Chinese)
[3] 廖海黎,马存明,李明水,等.港珠澳大桥的结构抗风性能[J].清华大学学报(自然科学版), 2020, 60(1):41-47. LIAO H L, MA C M, LI M S, et al. Wind resistance of the Hong Kong-Zhuhai-Macao Bridge[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(1):41-47.(in Chinese)
[4] 余秋阳,李兴华,李新涛,等.大展弦比NACA0012弹性平直机翼颤振特性研究[J].西北工业大学学报, 2022, 40(5):1071-1079. YU Q Y, LI X H, LI X T, et al. Study on flutter characteristics of NACA0012 flexible straight wing with high-aspect-ratio[J]. Journal of Northwestern Polytechnical University, 2022, 40(5):1071-1079.(in Chinese)
[5] HAN P, DE LANGRE E. There is no critical mass ratio for galloping of a square cylinder under flow[J]. Journal of Fluid Mechanics, 2022, 931:A27.
[6] HAN P, HéMON P, PAN G, et al. Nonlinear modeling of combined galloping and vortex-induced vibration of square sections under flow[J]. Nonlinear Dynamics, 2021, 103(4):3113-3125.
[7] BLEVINS R D. Flow-induced vibration[M]. Melbourne:Krieger Publishing Company, 2001.
[8] WILLIAMSON C H K, GOVARDHAN R. Vortex-induced vibrations[J]. Annual Review of Fluid Mechanics, 2004, 36(1):413-455.
[9] 及春宁,李非凡,陈威霖,等.圆柱涡激振动研究进展与展望[J].海洋技术学报, 2015, 34(1):106-118. JI C N, LI F F, CHEN W L, et al. Progress and prospect of the study on vortex-induced vibration of circular cylinders[J]. Journal of Ocean Technology, 2015, 34(1):106-118.(in Chinese)
[10] KANDASAMY R, CUI F S, TOWNSEND N, et al. A review of vibration control methods for marine offshore structures[J]. Ocean Engineering, 2016, 127:279-297.
[11] WANG W, MAO Z Y, SONG B W, et al. Numerical investigation on vortex-induced vibration suppression of the cactus-inspired cylinder with some ribs[J]. Physics of Fluids, 2021, 33(3):037127.
[12] 赵思涵,王恩浩.低雷诺数下带有固定式分隔板的弹性支撑圆柱流致振动特性数值模拟研究[C]//第三十三届全国水动力学研讨会论文集.重庆,中国:海洋出版社, 2022:440-447. ZHAO S H, WANG E H. Numerical investigation into the flow induced vibration of an elastically mounted circular cylinder with a fixed splitter plate at a low Reynolds number[C]//Proceedings of the 33rd National Symposium on Hydrodynamics. Chongqing, China:Ocean Press, 2022:440-447.(in Chinese)
[13] BERNITSAS M M, RAGHAVAN K, BEN-SIMON Y, et al. VIVACE (Vortex Induced Vibration Aquatic Clean Energy):A new concept in generation of clean and renewable energy from fluid flow[J]. Journal of Offshore Mechanics and Arctic Engineering, 2006, 130(4):041101.
[14] 王军雷,冉景煜,张智恩,等.外界载荷对圆柱涡激振动能量转换的影响[J].浙江大学学报(工学版), 2015, 49(6):1093-1100. WANG J L, RAN J Y, ZHANG Z E, et al. Effects of external load on energy conversion of vortex-induced vibrating cylinder[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(6):1093-1100.(in Chinese)
[15] DING L, ZHANG L, WU C M, et al. Flow induced motion and energy harvesting of bluff bodies with different cross sections[J]. Energy Conversion and Management, 2015, 91:416-426.
[16] SOTI A K, DE A. Vortex-induced vibrations of a confined circular cylinder for efficient flow power extraction[J]. Physics of Fluids, 2020, 32(3):033603.
[17] BARRERO-GIL A, PINDADO S, AVILA S. Extracting energy from Vortex-Induced Vibrations:A parametric study[J]. Applied Mathematical Modelling, 2012, 36(7):3153-3160.
[18] 李申芳,王军雷,王中林.利用摩擦纳米发电机的流体能量俘获研究新进展[J].力学学报, 2021, 53(11):2910-2927. LI S F, WANG J L, WANG Z L. Progression on fluid energy harvesting based on triboelectric nanogenerators[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11):2910-2927.(in Chinese)
[19] HAN P, PAN G, ZHANG B S, et al. Three-cylinder oscillator under flow:Flow induced vibration and energy harvesting[J]. Ocean Engineering, 2020, 211:107619.
[20] HAN P, HUANG Q G, PAN G, et al. Energy harvesting from flow-induced vibration of a low-mass square cylinder with different incidence angles[J]. AIP Advances, 2021, 11(2):025126.
[21] 绳丽洁,王军雷.流致振动压电能量俘获的研究进展[J].动力学与控制学报, 2022, 20(4):12-23. SHENG L J, WANG J L. Research progress of piezoelectric energy harvesting from flow-induced vibration[J]. Journal of Dynamics and Control, 2022, 20(4):12-23.(in Chinese)
[22] HAN P, DE LANGRE E, THOMPSON M C, et al. Vortex-induced vibration forever even with high structural damping[J]. Journal of Fluid Mechanics, 2023, 962:A13.
[23] FACCHINETTI M L, DE LANGRE E, BIOLLEY F. Coupling of structure and wake oscillators in vortex-induced vibrations[J]. Journal of Fluids and Structures, 2004, 19(2):123-140.
[24] HAN P, HUANG W X, QIN D H, et al. An analytical model for estimating the maximum energy harvesting efficiency from vortex-induced vibration[J]. Journal of Fluids and Structures, 2023, 122:103961.
[25] 陈东阳,肖清,顾超杰,等.柱体结构涡激振动数值计算[J].振动与冲击, 2020, 39(19):7-12, 47. CHEN D Y, XIAO Q, GU C J, et al. Numerical calculation of vortex-induced vibration of a cylinder structure[J]. Journal of Vibration and Shock, 2020, 39(19):7-12, 47.(in Chinese)
[26] 丁林,邹瑞,张力,等.基于拓扑网格方法的多钝体流致振动分析[J].振动与冲击, 2019, 38(22):236-243. DING L, ZOU R, ZHANG L, et al. Analysis on the flow-induced motion of multiple bluff bodies based on topological mesh[J]. Journal of Vibration and Shock, 2019, 38(22):236-243.(in Chinese)
[27] HAN P, PAN G, TIAN W L. Numerical simulation of flow-induced motion of three rigidly coupled cylinders in equilateral-triangle arrangement[J]. Physics of Fluids, 2018, 30(12):125107.
[28] WANG W, SONG B W, MAO Z Y, et al. Numerical investigation on vortex-induced vibration of bluff bodies with different rear edges[J]. Ocean Engineering, 2020, 197:106871.
[29] ZHANG B S, SONG B W, MAO Z Y, et al. Hydrokinetic energy harnessing by spring-mounted oscillators in FIM with different cross sections:From triangle to circle[J]. Energy, 2019, 189:116249.
[30] BLEVINS R D, COUGHRAN C S. Experimental investigation of vortex-induced vibration in one and two dimensions with variable mass, damping, and reynolds number[J]. Journal of Fluids Engineering, 2009, 131(10):101202.
[31] ZHAO M. Flow induced vibration of two rigidly coupled circular cylinders in tandem and side-by-side arrangements at a low Reynolds number of 150[J]. Physics of Fluids, 2013, 25(12):123601.
[32] MISHRA R, SOTI A, BHARDWAJ R, et al. Transverse vortex-induced vibration of a circular cylinder on a viscoelastic support at low Reynolds number[J]. Journal of Fluids and Structures, 2020, 95:102997.
[33] NORBERG C. Flow around a circular cylinder:Aspects of fluctuating lift[J]. Journal of Fluids and Structures, 2001, 15(3-4):459-469.
[34] SOTI A K, ZHAO J S, THOMPSON M C, et al. Damping effects on vortex-induced vibration of a circular cylinder and implications for power extraction[J]. Journal of Fluids and Structures, 2018, 81:289-308.
[35] OGINK R H M, METRIKINE A V. A wake oscillator with frequency dependent coupling for the modeling of vortex-induced vibration[J]. Journal of Sound and Vibration, 2010, 329(26):5452-5473.
[36] DE LANGRE E. Frequency lock-in is caused by coupled-mode flutter[J]. Journal of Fluids and Structures, 2006, 22(6-7):783-791.
[37] GROUTHIER C, MICHELIN S, MODARRES-SADEGHI Y, et al. Self-similar vortex-induced vibrations of a hanging string[J]. Journal of Fluid Mechanics, 2013, 724:R2.
[1] 杨林清, 秦本科, 薄涵亮. 结合部耦合的能量分析方法[J]. 清华大学学报(自然科学版), 2023, 63(5): 840-848.
[2] 王奇, 蒋伟, 王文强, 雷江利, 张章, 赵淼. 材料弹性对降落伞充气展开力学性能影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 356-366.
[3] 张章, 吴杰, 赵淼, 王奇, 刘宇. 空间充气式返回器气动弹性动力响应特征[J]. 清华大学学报(自然科学版), 2023, 63(3): 394-405.
[4] 项冲, 龙伟漾, 郭飞, 张新异, 蒋杰. 盾构主驱动密封性能流固耦合仿真[J]. 清华大学学报(自然科学版), 2023, 63(1): 71-77.
[5] 黄伟峰, 潘晓波, 王子羲, 郭飞, 刘莹, 李永健, 刘向锋. 上游泵送机械密封热流固耦合建模与性能分析[J]. 清华大学学报(自然科学版), 2020, 60(7): 603-610.
[6] 李明水, 孙延国, 廖海黎, 孟凡超, 马存明. 港珠澳大桥大挑臂钢箱梁涡激振动特性及抑振措施[J]. 清华大学学报(自然科学版), 2020, 60(1): 57-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn