COMPUTER SCIENCE AND TECHNOLOGY |
|
|
|
|
|
Experimental study of BGP routing-table-based inter-domain path characteristics |
YANG Jiahai1, JIAO Liang1,3, QIN Donghong1,2, GE Liansheng3 |
1. Institute of Cyberspace and Network Science, Tsinghua University, Beijing 100084, China;
2. School of Information Science and Engineering, Guangxi University for Nationalities, Nanning 530006, China;
3. Network and Information Center, Shandong University, Jinan 250100, China |
|
|
Abstract The information stored in the routing table for the border gateway protocol(BGP) can reflect the scale of the Internet, the running state and the evolution of the architecture, which is important for basic research of the Internet. Previous studies of routing tables have mainly focused on the indicators that reflect the Internet scale, such as the routing table size, the Internet coverage, and the address consumption, but lack analyses of routing diversity. This paper introduces a characteristic analysis model for inter-domain paths and a path characteristic analysis framework based on the IPv4 routing table information in the BGP with statistical analyses of the AS scale and the inter-domain path characteristics. The results give information about the AS-level path attributes and their parameter distributions. The analyses show that the Internet currently has a rich diversity of routing paths with some best paths selected by BGP not the shortest paths in the routing table. The results provide guidance for future inter-domain route planning.
|
Keywords
border gateway protocol
path analysis model
path diversity
path length
|
|
Issue Date: 15 November 2015
|
|
|
[1] Huston G. Analyzing the Internet's BGP routing table[J]. The Internet Protocol Journal, 2001, 4(1):2-15.
[2] Huston G. BGP table report[EB/OL].[2013-01-15]. http://bgp.potaroo.net.
[3] Smith P. Routing summaries at APNIC[EB/OL].[2013-01-15]. http://www.apnic.net/stats/bgp.
[4] The University of Oregon's Advanced Network Technology Center. University of Oregon Route Views Project.[EB/OL].[2013-01-15]. http://www.routeviews.org/.
[5] Huston G. AS6447 BGP routing table analysis reports[EB/OL].[2009-11-09]. http://bgp.potaroo.net/as6447/.
[6] Nayak K,Mckeman D. Measuring provider path diversity from traceroute data:Work in progress[EB/OL].[2009-11-09]. http://www.eaida.org/workshops/isma/0112/talks/krishna/.
[7] Teileira R. Marzullo K, Savage S, et al. In search of path diversity in ISP networks[C]//proc of ACM SIGCOMM 2003. New York, NY, USA:ACM, 2003:313-318.
[8] Teileira R, Marzullo K, Savage S, et al. Characterizing and measuring path diversity of Internet topologies[C]//Proc of ACM SIGMETRICS 2003. New York, NY, USA:ACM, 2003:304-305.
[9] Zheng H, Lua E, Pias M, et al. Internet routing policies and round-trip times[C]//Proc of 6th International Workshop on Passive and Active Network Measurement. Boston, MA, USA, 2005:236-250.
[10] Wang G, Zhang B. Towards network triangle inequality violation aware distributed systems[C]//Proc of the ACM/IMC Conference. San Diego, CA, USA:ACM, 2007:175-188.
[11] Huston G. Interconnection, peering andsettlements[J]. Internet Protocol Journal, 1999, 2(2):2-23.
[12] Baake P, Wichmann T. On the economics of internet peering[J].Netnomics, 1998, 1(1):89-105. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|