Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2015, Vol. 55 Issue (11) : 1264-1268     DOI: 10.16511/j.cnki.qhdxxb.2015.21.002
MICROELECTRONICS |
On-chip attenuator based on π-type polysilicon resistive network
GUO Xin, LI Mengwei, GONG Zhuhao, LIU Zewen
Institute of Microelectronics, Tsinghua University, Beijing 100084, China
Download: PDF(1228 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  An on-chip 0~20 GHz attenuator was developed based on a π-type polysilicon resistive network as low cost attenuators with adjustable size that are compatible with other circuits. The sheet resistance(100~400Ω/sq) of the polysilicon resistor can be controlled by varying the boron-doping concentrations(5×1018~1.4×1020 cm-3) and post-annealing conditions(950~1050℃, 10~30 min). The resistance error was controlled less than 4%. The on-chip attenuator size can be set by selecting the sheet resistance for the on-chip 10 dB and 20 dB attenuating resistive networks. The devices were modelled in 3-D with HFSS with the simulation results showing excellent performance. The attenuation accuracies of the 10 dB and 20 dB attenuators were 0.26 dB and 0.04 dB over the entire frequency band(0~20 GHz), while the voltage standing wave ratios(VSWR) were less than 1.13 and 1.29, respectively. Both resistive networks were 265μm×270μm in size while both attenuators were less than 1000μm×800μm in size. These high accuracy attenuators can be used in microwave test instruments.
Keywords polysilicon resistor      resistive attenuation network      on-chip attenuator     
ZTFLH:  TN385  
Issue Date: 15 November 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Xin
LI Mengwei
GONG Zhuhao
LIU Zewen
Cite this article:   
GUO Xin,LI Mengwei,GONG Zhuhao, et al. On-chip attenuator based on π-type polysilicon resistive network[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(11): 1264-1268.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2015.21.002     OR     http://jst.tsinghuajournals.com/EN/Y2015/V55/I11/1264
  
  
  
  
  
  
  
[1] Otto S, Bettray A, Solbach K. A distributed attenuator for K-band using standard SMD thin-film chip resistors[C]//Microwave Conference, Asia Pacific. Singapore:IEEE Press, 2009:2148-2151.
[2] Jiang H C, Si X, Zhang W L, et al. Microwave power thin film resistors for high frequency and high power load applications[J]. Appl Phys Let, 2010, 97, 173504.
[3] Shimamoto H, Ohnishi K, Shiba T, et al. Proposal and experimental study of a high-precision polycrystalline-silicon film resistor with a quasi-double-layer structure[J]. Electronics and Communications in Japan, Part 2, 2004, 87(7):643-650.
[4] Wang J, Ren Z Y, NguyenC T C, et al. 1.156-GHz self-aligned vibrating micromechanical disk resonator[J]. IEEE Trans Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51(12):1607-1628.
[5] Iannacci J, Giacomozzi F, Colpo1 S, et al., General purpose reconfigurable MEMS-Based attenuator for radio frequency and microwave applications[C]//EUROCON 2009.St-Petersberg, FL, USA:IEEE Press, 2009:1197-1205.
[6] Lee C H. Heat-treatment effect on boron implantation in polycrystalline silicon[J]. J Electrochem Soc, 1982(I29):1604-2607.
[7] Sitaram A R, Murarka S P, Sheng T T. Grain growth in boron doped LPCVD polysilicon films[J]. J Mater Res, 1990, 5(2):360-364.
[8] Seto J Y W. The electrical properties of polycrystalline silicon[J]. J Appl Phys, 1975(46):5247-5254.
[9] Mandurah M M, Saraswat K C, Kamins T I. A model for conduction in polycrystalline silicon-Part I:theory[J]. IEEE Trans Electr Dev, 1981, 28(10):1163-1171.
[10] Lu N C C, Meindl J D. A quantitative model of the effect of grain size on the resistivity of polycrystalline silicon resistors[J] , IEEE Trans Electr Dev, 1980, 1(3):38-41.
[11] Mandurah M M, Saraswat K C, Helms C R, et al. Dopant segregation in polycrystalline silicon[J]. J Appl Phys, 1980, 51(5755):5755-5763.
[12] Suwukim K, Miyata N, Kawamura K. Resistivity of heavily doped polycrystalline silicon subjected to furnace annealing[J]. Jpn J Appl Phys, 1995, 34(4A):1748-1752. null
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd