Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2015, Vol. 55 Issue (11) : 1157-1162     DOI: 10.16511/j.cnki.qhdxxb.2015.21.006
AUTO MATION |
Measurements of the competitive characteristics of multi-topic propagation in online social networks
SUN Liyuan1,2, GUAN Xiaohong1,3
1. Center for Intelligent and Networked Systems, Department of Automation, Tsinghua University, Beijing 100084, China;
2. National Computer Network Emergency Response Technical Team/Coordination Center, Beijing 100029, China;
3. MOE Key Laboratory for Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an 710049, China
Download: PDF(1822 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Online social networks have many topics but people's attention spans are very limited, so the many topics compete for the scarce user attention spans. This competitive relationship affects the propagation of information and the formation of public opinions. Most existing research has focused on the spread of individual topics. This study investigates the spread of multiple topics and methods to quantitatively describe the competitive characteristics. Topic and user level methods are developed to measure resource changes, topic competition intensity, user attention transitions and topic relevance. Metrics are developed for the resource variation rate and the user attention transition rate. Measurements of the actual data collected from Sina Weibo show that the total user attention level is almost stable with most user attention transitions moving from existing topics to newly appearing topics and between similar topics. These measurements provide modeling of the multi-topic propagation processes.
Keywords online social networks      multi-topic propagation      topic competition      user behavior     
ZTFLH:  TP393.0  
Issue Date: 15 November 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Liyuan
GUAN Xiaohong
Cite this article:   
SUN Liyuan,GUAN Xiaohong. Measurements of the competitive characteristics of multi-topic propagation in online social networks[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(11): 1157-1162.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2015.21.006     OR     http://jst.tsinghuajournals.com/EN/Y2015/V55/I11/1157
   
   
   
   
   
   
   
[1] Weng L, Flammini A, Vespignani A, et al. Competition among memes in a world with limited attention[J]. Scientific Reports, 2012, 2:335-343.
[2] Myers S A, Leskovec J. Clash of the contagions:Cooperation and competition in information diffusion[C]//Proceedings of the 12th IEEE International Conference on Data Mining. Brussels, Belgium:IEEE press, 2012:539-548.
[3] Huberman B A, Romero D M, Wu F. Social networks that matter:Twitter under the microscope[J]. First Monday, 2009, 14(1):47-61.
[4] Kwak H, Lee C, Park H, et al. What is Twitter, a social network or a news media[C]//Proceedings of the 19th International Conference on World Wide Web. New York, NY, USA:ACM press, 2010:591-600.
[5] Golder S A, Wilkinson D M, Huberman A. Rhythms of social interaction:Messaging within a massive online network[C]//Proceedings of the 3rd International Conference on Communities and Technologies. London, UK:Springer, 2007:41-66.
[6] Mislove A E. Online Social Networks:Measurement, Analysis, and Applications to Distributed Information Systems[D]. Houston, TX, USA:Rice University, 2009.
[7] 刘玮, 王丽宏, 李锐光. 面向话题的微博网络测量研究[J]. 通信学报, 2013, 34(11):171-178.LIU Wei, WANG Lihong, LI Ruiguang. Topic-oriented measurement of microblogging network[J].Journal on Communicaitons, 2013, 34(11):171-178.(in Chinese)
[8] 周亚东. 在线社会网络热点话题识别与动态传播建模与分析研究[D]. 西安:西安交通大学, 2011.ZHOU Yadong. Modeling and Analysis for Topic Detection and Group Dynamics over Online Social Networks[D]. Xi'an:Xi'an Jiaotong University, 2011.(in Chinese)
[9] Leskovec J, Backstrom L et al. Meme-tracking and the dynamics of the news cycle[C]//Proceedings of the 15th ACM International Conference on Knowledge Discovery and Data Mining. Paris, France:ACM press, 2009:497-506.
[10] Yang J, Leskovec J. Patterns of temporal variation in online media[C]//Proceedings of the 4th ACM International Coference on Web Search and Data Mining. Hongkong, China:ACM press, 2011:177-186.
[11] Bakshy E, Rosenn I, Marlow C, et al. The role of social networks in information diffusion[C]//Proceedings of the 21st International Conference on World Wide Web. Lyon, France:ACM press, 2012:519-528.
[12] Gonçalves B, Perra N, Vespignani A. Modeling users' activity on twitter networks:Validation of dunbar's number[J]. PLoS One, 2011, 6(8), e22656.
[13] Xu P, Wu Y, Wei E, etc. Visual analysis of topic competition on social media[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12):2012-2021.
[14] Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509-512.
[1] ZHANG Hui, SU Ning, LIU Yiqun, MA Shaoping. Effect of snippet text bolding in search user behavior[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(8): 703-709.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd