Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2015, Vol. 55 Issue (11) : 1163-1170     DOI: 10.16511/j.cnki.qhdxxb.2015.21.007
AUTO MATION |
Modeling of the forwarding behavior in microblogging with adaptive interest
ZHOU Cangqi1,2, ZHAO Qianchuan1,2, LU Wenbo1,2
1. Center for Intelligent and Networked Systems, Department of Automation, Tsinghua University, Beijing 100084, China;
2. Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China
Download: PDF(1250 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The emergence of social media has given rise to research on how online users behave. This paper describes how users forward messages in microblogging services. The results shed light on the factors affecting user decisions. A precise description of user forwarding behavior can also support the intervention and control of information spreading. The lengths of activity periods in existing human dynamic models with adaptive interest were used to develop a modified model to describe user forwarding dynamics in microblogging services. This model takes into account both the differences in the durations of the activity cycles and the effect of circadian rhythms. The distribution of the time intervals between successive forwarding activities is heavy-tailed in the real data. The simulation results are consistent with the distribution in the real data which demonstrates the effectiveness and flexibility of this model.
Keywords microblogging      forwarding behavior      modeling     
ZTFLH:  TP393.1  
Issue Date: 15 November 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Cangqi
ZHAO Qianchuan
LU Wenbo
Cite this article:   
ZHOU Cangqi,ZHAO Qianchuan,LU Wenbo. Modeling of the forwarding behavior in microblogging with adaptive interest[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(11): 1163-1170.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2015.21.007     OR     http://jst.tsinghuajournals.com/EN/Y2015/V55/I11/1163
   
   
   
  
  
  
  
  
  
  
[1] Fu F, Liu L, Wang L. Empirical analysis of online social networks in the age of Web 2.0[J]. Physica A:Statistical Mechanics and its Applications, 2008, 387(2-3):675-684.
[2] Barabási A L. The origin of bursts and heavy tails in human dynamics[J]. Nature, 2005, 435(7039):207-211.
[3] 张晶, 黄京华, 黎波, 等. 新浪企业微博口碑传播的实证研究[J]. 清华大学学报(自然科学版), 2014, 54(5):649-654. ZHANG Jing, HUANG Jinghua, LI Bo, et al. Empirical research on enterprise micro-blogs' word-of-mouth of Sina Weibo[J]. J Tsinghua Univ(Sci and Tech), 2014, 54(5):649-654.(in Chinese)
[4] 李栋, 徐志明, 李生, 等. 在线社会网络中信息扩散[J]. 计算机学报, 2014, 37(1):189-206.LI Dong, XU Zhiming, LI Sheng, et al. A survey on information difusion in online social networks[J]. Chinese Journal of Computers, 2014, 37(1):189-206.(in Chinese)
[5] Kempe D, Kleinberg J, Tardos É. Maximizing the spread of influence through a social network[C]//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington DC, USA:ACM Press, 2003:137-146.
[6] 曹玖新, 吴江林, 石伟, 等. 新浪微博网信息传播分析与预测. 计算机学报, 2014, 37(4):779-790.CAO Jiuxin, WU Jianglin, SHI Wei, et al. Sina microblog information difusion analysis and prediction[J]. Chinese Journal of Computers, 2014, 37(4):779-790.(in Chinese)
[7] Peng H K, Zhu J, Piao D, et al. Retweet modeling using conditional random fields[C]//2011 IEEE 11th International Conference on Data Mining Workshops. Vancouver, Canada:IEEE Press, 2011:336-343.
[8] Gao S, Ma J, Chen Z. Modeling and predicting retweeting dynamics on Microblogging platforms[C]//Proceedings of the 8th ACM International Conference on Web Search and Data Mining. Oxford, UK:ACM Press, 2015:107-116.
[9] Jiang Z, Zhang Y, Wang H, et al. Understanding human dynamics in microblog posting activities[J]. Journal of Statistical Mechanics:Theory and Experiment, 2013, 2013(02):P02006.
[10] Wang C, Guan X, Qin T, et al. Modeling the heterogeneity of human dynamics based on the measurements of influential users in Sina Microblog[J]. Physica A:Statistical Mechanics and its Applications, 2015, 428:239-249.
[11] Zhou T, Zhao Z D, Yang Z, et al. Relative clock verifies endogenous bursts of human dynamics[J]. Europhysics Letters, 2012, 97(1), 18006.
[12] Yan Q, Yi L, Wu L. Human dynamic model co-driven by interest and social identity in the microblog community[J]. Physica A:Statistical Mechanics and Its Applications, 2012, 391(4):1540-1545.
[13] 廉捷, 周欣, 曹伟, 等. 新浪微博数据挖掘方案[J]. 清华大学学报(自然科学版), 2011, 51(10):1300-1305.LIAN Jie, ZHOU Xin, CAO Wei, et al. Sina microblog data retrieval[J]. J Tsinghua Univ(Sci and Tech), 2011, 51(10):1300-1305.(in Chinese)
[14] Crane R, Sornette D. Robust dynamic classes revealed by measuring the response function of a social system[J]. Proceedings of the National Academy of Sciences, 2008, 105(41):15649-15653.
[15] Han X P, Zhou T, Wang B H. Modeling human dynamics with adaptive interest[J]. New Journal of Physics, 2008, 10(7), 073010.
[16] Wang P, Lei T, Yeung C H, et al. Heterogenous human dynamics in intra-and inter-day time scales[J]. Europhysics Letters, 2011, 94(1), 18005.
[17] Zhou T, Han X P, Wang B H. Towards the understanding of human dynamics[J]. Science Matters:Humanities as Complex Systems, 2008:207-233.
[1] YANG Yong, ZHANG Zhao, WANG Dongliang, WEN Zhuoyu, ZHOU Huairong, ZHANG Dongqiang. Production technology of p-xylene production by toluene methylation with selective carbon dioxide hydrogenation[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(3): 538-544.
[2] LIU Guangyu, AN Peng, WU Zhen, HU Zhenzhong. Ontology-based modeling and application of highway engineering safety knowledge[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(2): 224-234.
[3] FU Hanliang, TAN Yubing, XIA Zhongjing, GUO Xiaotong. Effect of expert hazard identification trajectory on construction workers' safety education: Evidence from an eye-tracking experiment[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(2): 205-213.
[4] ZHANG Xiaoyue, LI Yue, WANG Chenyang, CHEN Zhengxia, JIA Haifeng. Layout methods of sponge source facilities for future community based on different needs[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1483-1492.
[5] JIANG Wenyu, WANG Fei, SU Guofeng, QIAO Yuming, LI Xin, QUAN Wei. Dynamic modeling approach for suppression firing based on cellular automata[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 926-933.
[6] CAO Xinying, MENG Fanfan, LI Xiaodong. Intelligent identification of rework risk in the prefabricated construction process based on lean management[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(2): 201-209.
[7] ZHU Bin, WANG Liping, WU Jun, LAI Hansong. Reliability modeling and evaluation of CNC machine tools for a general state of repair[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 965-970.
[8] ZHAO Jiaqi, ZHANG Ming, ZHU Yu, CHENG Rong, LI Xin, WANG Leijie, HU Chuxiong. Thermofluid modeling for concurrent size-topology optimization of heat sinks for planar motors[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 400-407.
[9] YANG Yaqin, XU Peng, WU Xishui. Adaptive modeling method based on the Fast-MCD to analyze railway track irregularity deterioration[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 516-522.
[10] GUO Hongling, YE Xiaotian, REN Qipeng, LUO Zhubang. Automatic generation of construction schedules based on BIM and rule reasoning[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(2): 189-198.
[11] Yong LUO,Zhufeng SHAO,Liping WANG,Jiahao QIU,Zhejin SHENG. X-axis thermal error modeling and compensation for an NL201HA CNC horizontal lathe[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(1): 28-35.
[12] WANG Hengwei, LIN Jiarui, ZHANG Jianping. Resource-constrained project scheduling problem considering productivity and construction methods[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(3): 271-277.
[13] LENG Shu, JU Hehua. Review of rover dynamics modeling methods[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(9): 689-698.
[14] CHEN Qingqiang, WANG Wenjian, JIANG Gaoxia. Label noise filtering based on the data distribution[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(4): 262-269.
[15] XU Xiao, WANG Ying, JIN Tao, WANG Jianmin. Representation learning approach for medical activities enhanced by topical modeling[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(3): 169-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd