ELECTRONIC ENGINEERING |
|
|
|
|
|
Mean physical-layer secrecy capacity in mobile communication systems |
LI Tao1, ZHANG Yan2, XU Xibin3, ZHOU Shidong1,3 |
1. State Key Lab on Microwave and Digital Communications, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
2. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China;
3. Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China |
|
|
Abstract The security of mobile communication systems depends on the mean physical-layer secrecy capacity as the user moves. In realistic propagation environments, the physical-layer secrecy capacity varies over a vast range because of the user motion. A mean physical-layer secrecy capacity of a legitimate user is defined to characterize the secure communication performance of the system. The distribution characteristics of the mean physical-layer secrecy capacity are derived based on the impact of the eavesdropper's position on the mean physical-layer secrecy capacity. A scheme is then given to improve the mean physical-layer secrecy capacity according to the distribution characteristics. The mean physical-layer secrecy capacity can be made to be not lower than a specified value by limiting the eavesdropper's positions. Theoretical and numerical results demonstrate that this scheme can effectively guarantee the mean physical-layer secrecy capacity in mobile communication systems.
|
Keywords
mobile communication
physical-layer security
mean physical-layer secrecy capacity
|
|
Issue Date: 15 November 2015
|
|
|
[1] Massey J L. An introduction to contemporary cryptology[J]. Proceedings of the IEEE, 1988, 76(5):533-549.
[2] Schneier B. Cryptographic design vulnerabilities[J]. Computer, 1998, 31(9):29-33.
[3] Shannon C E. Communication theory of secrecy systems[J]. Bell system technical journal, 1949, 28(4):656-715.
[4] Wyner A D. The wire-tap channel[J]. Bell System Technical Journal, 1975, 54(8):1355-1387.
[5] Leung-Yan-Cheong S, Hellman M E. The Gaussian wire-tap channel[J]. Information Theory, IEEE Transactions on, 1978, 24(4):451-456.
[6] Csiszár I, Korner J. Broadcast channels with confidential messages[J]. Information Theory, IEEE Transactions on, 1978, 24(3):339-348.
[7] Li Z, Yates R, Trappe W. Secret communication with a fading eavesdropper channel[C]//Information Theory, 2007. ISIT 2007. IEEE International Symposium on. Nice, Alpes-Maritimes, France:IEEE Press, 2007:1296-1300.
[8] Li Z, Yates R, Trappe W. Secrecy capacity of independent parallel channels. Proceedings of Proc. 44th Annu. Allerton Conf., Allerton House, Illinois, 2006. 841-848.
[9] Hero A O. Secure space-time communication[J]. Information Theory, IEEE Transactions on, 2003, 49(12):3235-3249.
[10] Pei Y, Liang Y C, Teh K C, et al. Secure communication in multiantenna cognitive radio networks with imperfect channel state information[J]. Signal Processing, IEEE Transactions on, 2011, 59(4):1683-1693.
[11] Negi R, Goel S. Secret communication using artificial noise[C]//IEEE Vehicular Technology Conference. Dallas, TX, USA:IEEE Press, 1999, 2005, 62(3):1906.
[12] Dong L, Han Z, Petropulu A P, et al. Improving wireless physical layer security via cooperating relays[J]. Signal Processing, IEEE Transactions on, 2010, 58(3):1875-1888.
[13] Jeong C, Kim I M, Kim D I. Joint secure beamforming design at the source and the relay for an amplify-and-forward MIMO untrusted relay system[J]. Signal Processing, IEEE Transactions on, 2012, 60(1):310-325.
[14] Liu R, Maric I, Spasojevic P, et al. Discrete memoryless interference and broadcast channels with confidential messages:Secrecy rate regions[J]. Information Theory, IEEE Transactions on, 2008, 54(6):2493-2507.
[15] Bagherikaram G, Motahari A S, Khandani A K. The secrecy capacity region of the Gaussian MIMO broadcast channel[J]. Information Theory, IEEE Transactions on, 2013, 59(5):2673-2682.
[16] Ekrem E, Ulukus S. The secrecy capacity region of the Gaussian MIMO multi-receiver wiretap channel[J]. Information Theory, IEEE Transactions on, 2011, 57(4):2083-2114.
[17] Liang Y, Poor H V. Multiple-access channels with confidential messages[J]. Information Theory, IEEE Transactions on, 2008, 54(3):976-1002.
[18] Tekin E, Yener A. The Gaussian multiple access wire-tap channel[J]. Information Theory, IEEE Transactions on, 2008, 54(12):5747-5755.
[19] Lai L, El Gamal H. The relay-eavesdropper channel:Cooperation for secrecy[J]. Information Theory, IEEE Transactions on, 2008, 54(9):4005-4019.
[20] Marina N, Bose R, Hjorungnes A. Increasing the secrecy capacity by cooperation in wireless networks[C]//Personal, Indoor and Mobile Radio Communications, 2009 IEEE 20th International Symposium on. Tokyo, Japan:IEEE Press, 2009:1978-1982.
[21] Marina N, Hjorungnes A. Characterization of the secrecy region of a single relay cooperative system[C]//Wireless Communications and Networking Conference(WCNC), 2010 IEEE. Sydney, Australia:IEEE Press, 2010:1-6.
[22] Li W, Ghogho M, Chen B, et al. Secure communication via sending artificial noise by the receiver:outage secrecy capacity/region analysis[J]. Communications Letters, IEEE, 2012, 16(10):1628-1631. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|