Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2015, Vol. 55 Issue (11) : 1241-1245,1252     DOI: 10.16511/j.cnki.qhdxxb.2015.21.013
ELECTRONIC ENGINEERING |
Mean physical-layer secrecy capacity in mobile communication systems
LI Tao1, ZHANG Yan2, XU Xibin3, ZHOU Shidong1,3
1. State Key Lab on Microwave and Digital Communications, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
2. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China;
3. Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China
Download: PDF(1540 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The security of mobile communication systems depends on the mean physical-layer secrecy capacity as the user moves. In realistic propagation environments, the physical-layer secrecy capacity varies over a vast range because of the user motion. A mean physical-layer secrecy capacity of a legitimate user is defined to characterize the secure communication performance of the system. The distribution characteristics of the mean physical-layer secrecy capacity are derived based on the impact of the eavesdropper's position on the mean physical-layer secrecy capacity. A scheme is then given to improve the mean physical-layer secrecy capacity according to the distribution characteristics. The mean physical-layer secrecy capacity can be made to be not lower than a specified value by limiting the eavesdropper's positions. Theoretical and numerical results demonstrate that this scheme can effectively guarantee the mean physical-layer secrecy capacity in mobile communication systems.
Keywords mobile communication      physical-layer security      mean physical-layer secrecy capacity     
ZTFLH:  TP929.5  
Issue Date: 15 November 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Tao
ZHANG Yan
XU Xibin
ZHOU Shidong
Cite this article:   
LI Tao,ZHANG Yan,XU Xibin, et al. Mean physical-layer secrecy capacity in mobile communication systems[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(11): 1241-1245,1252.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2015.21.013     OR     http://jst.tsinghuajournals.com/EN/Y2015/V55/I11/1241
  
  
  
  
[1] Massey J L. An introduction to contemporary cryptology[J]. Proceedings of the IEEE, 1988, 76(5):533-549.
[2] Schneier B. Cryptographic design vulnerabilities[J]. Computer, 1998, 31(9):29-33.
[3] Shannon C E. Communication theory of secrecy systems[J]. Bell system technical journal, 1949, 28(4):656-715.
[4] Wyner A D. The wire-tap channel[J]. Bell System Technical Journal, 1975, 54(8):1355-1387.
[5] Leung-Yan-Cheong S, Hellman M E. The Gaussian wire-tap channel[J]. Information Theory, IEEE Transactions on, 1978, 24(4):451-456.
[6] Csiszár I, Korner J. Broadcast channels with confidential messages[J]. Information Theory, IEEE Transactions on, 1978, 24(3):339-348.
[7] Li Z, Yates R, Trappe W. Secret communication with a fading eavesdropper channel[C]//Information Theory, 2007. ISIT 2007. IEEE International Symposium on. Nice, Alpes-Maritimes, France:IEEE Press, 2007:1296-1300.
[8] Li Z, Yates R, Trappe W. Secrecy capacity of independent parallel channels. Proceedings of Proc. 44th Annu. Allerton Conf., Allerton House, Illinois, 2006. 841-848.
[9] Hero A O. Secure space-time communication[J]. Information Theory, IEEE Transactions on, 2003, 49(12):3235-3249.
[10] Pei Y, Liang Y C, Teh K C, et al. Secure communication in multiantenna cognitive radio networks with imperfect channel state information[J]. Signal Processing, IEEE Transactions on, 2011, 59(4):1683-1693.
[11] Negi R, Goel S. Secret communication using artificial noise[C]//IEEE Vehicular Technology Conference. Dallas, TX, USA:IEEE Press, 1999, 2005, 62(3):1906.
[12] Dong L, Han Z, Petropulu A P, et al. Improving wireless physical layer security via cooperating relays[J]. Signal Processing, IEEE Transactions on, 2010, 58(3):1875-1888.
[13] Jeong C, Kim I M, Kim D I. Joint secure beamforming design at the source and the relay for an amplify-and-forward MIMO untrusted relay system[J]. Signal Processing, IEEE Transactions on, 2012, 60(1):310-325.
[14] Liu R, Maric I, Spasojevic P, et al. Discrete memoryless interference and broadcast channels with confidential messages:Secrecy rate regions[J]. Information Theory, IEEE Transactions on, 2008, 54(6):2493-2507.
[15] Bagherikaram G, Motahari A S, Khandani A K. The secrecy capacity region of the Gaussian MIMO broadcast channel[J]. Information Theory, IEEE Transactions on, 2013, 59(5):2673-2682.
[16] Ekrem E, Ulukus S. The secrecy capacity region of the Gaussian MIMO multi-receiver wiretap channel[J]. Information Theory, IEEE Transactions on, 2011, 57(4):2083-2114.
[17] Liang Y, Poor H V. Multiple-access channels with confidential messages[J]. Information Theory, IEEE Transactions on, 2008, 54(3):976-1002.
[18] Tekin E, Yener A. The Gaussian multiple access wire-tap channel[J]. Information Theory, IEEE Transactions on, 2008, 54(12):5747-5755.
[19] Lai L, El Gamal H. The relay-eavesdropper channel:Cooperation for secrecy[J]. Information Theory, IEEE Transactions on, 2008, 54(9):4005-4019.
[20] Marina N, Bose R, Hjorungnes A. Increasing the secrecy capacity by cooperation in wireless networks[C]//Personal, Indoor and Mobile Radio Communications, 2009 IEEE 20th International Symposium on. Tokyo, Japan:IEEE Press, 2009:1978-1982.
[21] Marina N, Hjorungnes A. Characterization of the secrecy region of a single relay cooperative system[C]//Wireless Communications and Networking Conference(WCNC), 2010 IEEE. Sydney, Australia:IEEE Press, 2010:1-6.
[22] Li W, Ghogho M, Chen B, et al. Secure communication via sending artificial noise by the receiver:outage secrecy capacity/region analysis[J]. Communications Letters, IEEE, 2012, 16(10):1628-1631.
[1] ZHOU Shidong, YANG Zhi, XIAO Limin. Key generation rate analysis with changes in the user position[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(8): 862-866.
[2] WANG Jing, WANG Yanmin, FENG Wei, XIAO Limin, ZHOU Shidong. Energy efficient coordinated transmission scheme for multi-cell distributed antenna systems[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(1): 67-71.
[3] ZHAO Juntao, FENG Wei, ZHAO Ming, WANG Jing. Resource optimization with large-scale channel state information for spectrum sharing systems[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(7): 692-695.
[4] WANG Jing, WANG Yanmin, FENG Wei, XIAO Limin, ZHOU Shidong. Optimizing power consumption in distributed antenna systems with large-scale CSIT[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(7): 696-699,706.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd