MECHANICAL ENGINEERING |
|
|
|
|
|
Flows in brush seals based on a 2-D staggered tube bundle model |
HUANG Shouqing1,2, SUO Shuangfu1, LI Yongjian1, YANG Jie1, LIU Shouwen2, WANG Yuming1 |
1. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
2. Beijing Key Laboratory of Environment and Reliability Test Technology for Aerospace Mechanical and Electrical Products, Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China |
|
|
Abstract The flows in brush seals were modeled using a two-dimensional closed staggered tube bundle model of the bristle pack cross section that was solved using computational fluid dynamics (CFD). The pressure and velocity distributions of the leakage were studied for various pressure differentials, number of axial bristle rows, and inter-tube spacing. The results show that the calculated pressures and velocities with 1 and 6 bristles in the circumferential direction are very similar with differences less than 3% for each data point and the calculated pressure gradients agree with rotor surface pressure measurements. For an inlet pressure of 0.2 MPa, the pressure drop across the last downstream bristle is about 6 times that over the upstream bristles while the maximum velocity rise is about 8 times greater. The growing pressure differential exacerbates the pressure drop and the maximum velocity rise across the last downstream bristle. The average outlet axis velocity increases linearly with the increasing pressure differentials and deceases logarithmically with the number of axial bristle rows. The sealing effect can be significantly enhanced by reducing the inter-tube spacing of the bristles for normal pressure differentials and number of axial bristle rows.
|
Keywords
brush seal
leakage
staggered tube bundle
computational fluid dynamics (CFD)
|
|
Online First Date: 21 October 2015
Issue Date: 15 February 2016
|
|
|
[1] Bayley F J, Long C A. A combined experimental and theoretical study of flow and pressure distributions in a brush seal [J]. ASME Journal of Engineering for Gas Turbine and Power, 1993, 115(2): 404-410.
[2] Dogu Y, Aksit M F. Brush seal temperature distribution analysis [J]. ASME Journal of Engineering for Gas Turbines and Power, 2005, 128(3): 559-609.
[3] Braun M J, Kudriavtseu V V. A numerical simulation of a brush seal section and some experimental results [J]. Transactions of the ASME, 1995, 117: 190-202.
[4] 戴伟. 刷式密封泄漏流动及接触传热的数值分析[D].上海: 上海交通大学, 2011. DAI Wei. Numerical Simulation of Leakage Flow and Contact Heat Transfer through Brush Seal [D]. Shanghai: Shanghai Jiao Tong University, 2011. (in Chinese)
[5] Chew J W, Lapworth B L, Millener P J. Mathematical modeling of brush seals [J]. International Journal of Heat and Fluid Flow, 1995, 16(6): 493-500.
[6] Dogu Y. Investigation of brush seal flow characteristics using bulk porous medium approach [J]. ASME Journal of Engineering for Gas Turbines and Power, 2005, 127(1): 136-144.
[7] 李理科, 王之栎, 宋飞, 等. 刷式密封温度场数值研究[J]. 航空动力学报, 2010, 25(5): 1018-1024.LI Like, WANG Zhili, SONG Fei, et al. Numerical investigation of temperature field in brush seals [J]. Journal of Aerospace Power, 2010, 25(5): 1018-1024. (in Chinese)
[8] HUANG Shouqing, SUO Shuangfu, LI Yongjian, et al. Theoretical and experimental investigation on tip forces and temperature distributions of the brush seal coupled aerodynamic force [J]. ASME Journal of Engineering for Gas Turbine and Power, 2014, 136(5): 052502-1-12.
[9] 黄首清, 索双富, 李永健, 等. 刷式密封流场和温度场的3维数值计算[J]. 清华大学学报: 自然科学版, 2014, 54(6): 805-810.HUANG Shouqing, SUO Shuangfu, LI Yongjian, et al. Numerical calculation on flow and temperature distributions of brush seal three-dimensional model [J]. J Tsinghua Univ: Sci and Tech, 2014, 54(6): 805-810. (in Chinese)
[10] Franceschini G, Jones T V, Gillespie D R H. Improved understanding of blow-down in filament seals [C]//ASME Turbo Expo. Berlin, Germany: ASME, 2008: 51197-1-12.
[11] Ramezanpour A, Shirvani H, Rahmani R, et al. Three dimensional numerical modelling of staggered tube bundle turbulent crossflow in duct [C]//ASME Summer Heat Transfer Conference. San Francisco, CA, USA: ASME, 2005: 72532-1-9.
[12] Layeghi M. Numerical analysis of wooden porous media effects on heat transfer from a staggered tube bundle [J]. Journal of Heat Transfer, 2008, 130(1): 014501-1-6.
[13] 潘维, 池作和, 斯东波, 等. 匀速流体横掠管束的流场数值模拟[J]. 浙江工业大学学报: 工学版, 2004, 38(8): 1043-1046.PAN Wei, CHI Zuohe, SI Dongbo, et al. Numerical simulation of uneven entry velocity distribution gas flowing across different arrayed tube bundles [J]. J Zhejiang Univ: Sci and Tech, 2004, 38(8): 1043-1046. (in Chinese)
[14] Lelli D, Chew J W, Cooper P. Combined three-dimensional fluid dynamics and mechanical modeling of brush seals [J]. ASME J Turbomachinery, 2006, 128(1): 188-195.
[15] Chew J W, Guardino C. Simulation of flow and heat transfer in the tip region of a brush seal [J]. Int J Heat Fluid Flow, 2004, 25: 649-658. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|