Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2015, Vol. 55 Issue (10) : 1105-1109,1116     DOI: 10.16511/j.cnki.qhdxxb.2015.22.020
THERMAL ENGINEERING |
Numerical simulation of the dispersion of supercritical CO2 storage in saline aquifers
GAO Cheng, XU Ruina, JIANG Peixue
Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(3396 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Supercritical CO2 storage in saline aquifers results in a density gradient which causes dispersion and sedimentation due to CO2 dissolving in the brine during the CO2 migration. This density gradient plays a significant role in promoting the geological storage capacity, reducing pressures on the caprock, and reducing the CO2 leakage risk. This paper describes numerical investigations of the influence of key parameters such as the salinity, temperature, and pressure on the amount of CO2 dissolved in brine per unit volume over time. The results show that, for the same permeability and porous structure of the saline aquifer, a higher salinity leads to weak fingering with small amounts of dissolved CO2. Higher temperatures contribute to strong fingering and small amounts of dissolved CO2. Higher pressures also produce fingering with large amounts of dissolved CO2.
Keywords carbondioxide storage      fingering phenomenon      dispersion     
ZTFLH:  TK124  
Issue Date: 15 October 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAO Cheng
XU Ruina
JIANG Peixue
Cite this article:   
GAO Cheng,XU Ruina,JIANG Peixue. Numerical simulation of the dispersion of supercritical CO2 storage in saline aquifers[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(10): 1105-1109,1116.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2015.22.020     OR     http://jst.tsinghuajournals.com/EN/Y2015/V55/I10/1105
  
  
  
  
  
  
  
  
[1] Metz B, Davidson O R, Bosch P R, et al. Summary for Policymakers [C]// Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2007.
[2] 刘翠兰, 曹东, 张战胜, 等. 二氧化碳捕集、利用与封存环境风险评估技术指南(试行)(征求意见稿) [R]. 北京: 环境保护部环境规划院, 中国科学院武汉岩土力学研究所, 环境保护部环境工程评估中心, 中国地质调查局水文地质环境地质调查中心. 2014.LIU Cuilan, CAO Dong, ZHANG Zhansheng, et al. Environmental Risk Assessment Guidelines for Carbon Dioxide Capture, Utilization and Storage (Trial Version) (Draft) [R]. Beijing: Chinese Academy for Environmental Planning, Ministry of Environmental Protection of China; Institute of Rock and Soil Mechanics, Chinese Academy of Sciences; Appraisal Center of Environmental Engineering, Ministry of Environmental Protection of China; Center of Hydrogeological Environment Geological Survey, China Geological Survey. 2014. (in Chinese)
[3]Boek E S, Venturoli M. Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries [J]. Comput Math Appl, 2010, 59: 2305-2314.
[4]高诚, 胥蕊娜, 姜培学. 基于二氧化碳封存的超临界两相流动的数值研究[J]. 工程热物理学报, 2014, 35(5): 944-947. GAO Cheng, XU Ruina, JIANG Peixue. The numerical investigation of supercritical two phase fluid flow in support of carbon dioxide storage [J]. Journal of Engineering Thermophysics, 2014, 35(5): 944-947. (in Chinese)
[5]Chen L, Kang Q, Robinson B A, et al. Pore-scale modeling of multiphase reactive transport with phase transitions and dissolution-precipitation processes in closed systems [J]. Phys Rev E, 2013, 87, 043306.
[6]Dou Z, Zhou Z F. Numerical study of non-uniqueness of the factors influencing relative permeability in heterogeneous porous media by lattice Boltzmann method [J]. Int J Heat Fluid Flow, 2013, 42: 23-32.
[7]Perrin J C, Benson S. An experimental study on the influence of sub-core scale heterogeneities on CO2 distribution in reservoir rocks [J]. Transp Porous Med, 2010, 82: 93-109.
[8]Rangel-German E R, Kovscek A R. A micromodel investigation of two-phase matrix-fracture transfer mechanisms [J]. Water Resources Research, 2006, 42, W03401.
[9]马瑾, 胥蕊娜, 罗庶, 等. 超临界压力CO2在深部咸水层中运移规律研究[J]. 工程热物理学报, 2012, 33(11): 1971-1975.MA Jin, XU Ruina, LUO Shu, et al. Core-scale experimental study on supercritical-pressure CO2 migration mechanism during CO2 geological storage in deep saline aquifers [J]. Journal of Engineering Thermophysics, 2012, 33(11): 1971-1975. (in Chinese)
[10]Pruess K, Garcla J, Kovscek T, et al. Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2[J]. Energy, 2004, 29: 1431-1444.
[11]Class H, Ebigbo A, Helmig R, et al. A benchmark study on problems related to CO2 storage in geologic formations [J]. Computational Geosciences, 2009, 13(4): 409-434.
[12]Lindeberg E, Zweigel P, Bergmo P, et al. Prediction of CO2 dispersal pattern improved by geology and reservoir simulation and verified by time lapse seismic [C]// Proceedings of the 5th International Conference on Greenhouse Gas Control Technologies. Cairns, Australia, 2000.
[13]Pruess K. The TOUGH codes: A family of simulation tools for multiphase flow and transport processes in permeable media [J]. Vadose Zone Journal, 2004, 3: 738-746.
[14]LI Qi. Coupled reactive transport model for heat and density driven flow in CO2 storage in saline aquifers [J]. Journal of Hazardous Toxic and Radioactive Waste, 2011, 15: 251-258.
[1] ZHANG Xinghao, LIN Dantong, HU Liming. Numerical simulations of hydrodynamic dispersion based on an equivalent pore network model[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1906-1914.
[2] HUANG Wenshi, WU Yuxin, FENG Lele, ZHANG Man, ZHANG Yang. Dispersion characteristics of typical non-spherical particles in a high-speed round jet[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(6): 485-492.
[3] ZHANG Hong, YU Lutong, LI Linjun, LI Vera. Price dispersion and information search behavior in a second-hand housing market[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(11): 880-886.
[4] LI Ke, LIANG Manchun, SU Guofeng. Data assimilation method for atmospheric dispersion based on a Gaussian puff model[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(11): 992-999.
[5] WANG Yan, HUANG Hong, HUANG Lida, LI Yuntao. Numerical simulations of leakage gas dispersion based on soil and atmosphere coupling[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(3): 274-280.
[6] QIN Cuicui, SHAO Xuejun, ZHOU Jianyin, ZHOU Gang, XIAO Yi. Suitability of simulating flow in meandering channel by modified depth-averaged model[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(12): 1264-1270,1277.
[7] Yi LIU,Long LIU,Wangfeng LI,Yebin DONG,Xiuqing ZHANG. Modeling regional atmospheric risks of petrochemical park planning[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(1): 80-86.
[8] Yun LIU,Sheng FANG,Hong LI,Jingyuan QU,Rentai YAO,Dan FAN. Source inversion in nuclear accidents based on 4D variational data assimilation[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(1): 98-104.
[9] Xiaofeng HU,Hong HUANG,Shifei SHEN. Simulations of atmospheric dispersion of radioactive materials with the urban canopy model[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(6): 711-718.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd