Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2015, Vol. 55 Issue (12) : 1342-1347     DOI: 10.16511/j.cnki.qhdxxb.2015.24.012
PHYSICS AND ENGINEERING PHYSICS |
Prediction of retweet counts by a back propagation neural network
DENG Qing1, MA Yefeng1, LIU Yi2, ZHANG Hui1
1. Center for Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. Pubic Order School, People's Public Security University of China, Beijing 100038, China
Download: PDF(1021 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Twitter has become a major platform for expressing and gathering information to change people's opinions and lives. Retweets are a key mechanism for information diffusion. The retweet mechanism can be a useful method to guide public opinion and contribute to emergency responses. This paper considers a case study of the conflicts between urban management officials (known as Chengguan in China) and the public. This study focused on factor analysis and prediction of a tweet's popularity based on a back propagation (BP) neural network during a crisis. The weighted analysis of various factors from the perspectives of the posters and the content of the microblog messages shows how some factors, including the user's activity, hashtag, visual information, mentioning others and posting time, influences a message's popularity. The results show that followers are more attracted by a tweet's content rather than its poster. The prediction problem is changed into a pattern classification problem to predict the retweet count using a back propagation (BP) neural network. The stability of the results was tested by changing the number of samples.
Keywords Twitter      retweets      back propagation (BP) neural network      prediction      factors      weighted analysis      emergency responses     
ZTFLH:  G206.3  
Issue Date: 15 December 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DENG Qing
MA Yefeng
LIU Yi
ZHANG Hui
Cite this article:   
DENG Qing,MA Yefeng,LIU Yi, et al. Prediction of retweet counts by a back propagation neural network[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(12): 1342-1347.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2015.24.012     OR     http://jst.tsinghuajournals.com/EN/Y2015/V55/I12/1342
  
  
  
  
  
  
[1] GUAN Wanqiu, GAO Haoyu, YANG Mingmin. Analyzing user behavior of the micro-blogging website Sina Weibo during hot social events [J]. Physica A, 2014, 395: 340-351.
[2] Rudat A, Buder J, Hesse F W. Audience design in Twitter: Retweeting behavior between informational value and followers' interests [J]. Computers in Human Behavior, 2014, 35: 132-139.
[3] Morchid M, Dufour R, Bousquet P M, et al. Feature selection using principal component analysis for massive retweet detection [J]. Pattern Recognition Letters, 2014, 49: 33-39.
[4] 吴凯, 季新生, 刘彩霞. 基于行为预测的微博网络信息传播建模 [J]. 计算机应用研究, 2013, 30(6): 1809-1813. WU Kai, JI Xinsheng, LIU Caixia. Modeling information diffusion based on behavior predicting in microblog [J]. Application Research of Computers, 2013, 30(6): 1809-1813. (in Chinese)
[5] LIANG Bin, LIU Yiqun, ZHANG Min, et al. Searching for people to follow in social networks [J]. Expert Systems with Applications, 2014, 41(16): 7455-7465.
[6] Armentano M G, Godoy D, Amandi A A. Followee recommendation based on text analysis of micro-blogging activity [J]. Information Systems, 2013, 38(8): 1116-1127.
[7] PetroviS, Osborne M, Lavrenko V. RT to Win! Predicting Message Propagation in Twitter [C] // Fifth International AAAI Conference on Weblogs and Social Media (ICWSM). Barcelona, Spain: Association for the Advancement of Artificial Intelligence, 2011.
[8] 张旸, 路荣, 杨青. 微博客中转发行为的预测研究 [J]. 中文信息学报, 2012, 26(4): 109-115. ZHANG Yang, LU Rong, YANG Qing. Prediction retweeting in Microblogs [J]. Journal of Chinese Information Process, 2012, 26(4): 109-115. (in Chinese)
[9] Suh B, Hong L, Pirolli P, et al. Want to be retweeted? Large scale analytics on factors impacting retweet in twitter network [C] // 2010 IEEE Second International Conference on Social Computing (SocialCom). Minneapolis, USA: IEEE, 2010.
[10] 李英乐, 于洪涛, 刘力雄. 基于SVM的微博转发规模预测方法 [J]. 计算机应用研究, 2013: 30(9), 2594-2597. LI Yingle, YU Hongtao, LIU lixiong. Predict algorithm of micro-blog retweet scale based on SVM [J]. Application Research of Computers, 2013, 30(9): 2594-2597. (in Chinese)
[11] ZHANG Yiwen, QI Jiayin, FANG Binxing, et al. The indicator system based on BP neural network model for net-mediated public opinion on unexpected emergency [J]. China Communications, 2011, 8(2): 42-51.
[12] 何长虹, 黄全义, 申世飞, 等. 基于BP神经网络的森林可燃物负荷量估测 [J]. 清华大学学报: 自然科学版, 2011, 51(2): 230-233. HE Changhong, HUANG Quanyi, SHEN Shifei, et al. Forest fuel loading estimates based on a back propagation neutral network [J]. Journal of Tsinghua University: Science and Technology, 2011, 51(2): 230-233. (in Chinese)
[13] 杨淑娥, 黄礼. 基于BP神经网络的上市公司财务预警模型 [J]. 系统工程理论与实践, 2005, 1(1): 12-18. YANG Shu'e, HUANG Li. Financial crisis warning model based on BP neural network [J]. System Engineering-Theory & Practice, 2005, 1(1): 12-18. (in Chinese)
[14] 张天云, 陈奎, 魏伟, 等. BP神经网络法确定工程材料评价指标的权重 [J]. 材料导报, 2012, 26(2): 159-163. ZHANG Tianyun, CHEN Kui, WEI Wei, et al. The determination of index weights for comprehensive evaluation engineering materials with BP neural network [J]. Materials Review, 2012, 26(2): 159-163. (in Chinese)
[15] 刘敏, 孙树栋. 基于ANN的电子商务水平测度指标权重的确定方法 [J]. 电子商务, 2006, 4(88): 136-140. LIU Min, SUN Shudong. Research on method of computing indicator weight for E-commerce development level estimaion based on ANN [J]. Journal of E-commerce, 2006, 4(88): 136-140. (in Chinese)
[16] WANG Zhiliang, LI Yongchi, Shen R F. Correction of soil parameters in calculation of embankment settlement using a BP network back-analysis model [J]. Engineering Geology, 2007, 91(2): 168-177.
[17] REN Chao, AN Ning, WANG Jianzhou, et al. Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting [J]. Knowledge-Based Systems, 2014, 56: 226-239.
[1] ZHANG Xueqin, LIU Gang, WANG Zhineng, LUO Fei, WU Jianhua. Microscopic diffusion prediction based on multifeature fusion and deep learning[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(4): 688-699.
[2] HE Sheng, SHU Xueming, HU Jun, ZHANG Lei, ZHANG Jia, ZHANG Jiale, ZHOU Yang. Prediction and early-warning method of electrical fire risk based on fire-fighting big data[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(3): 478-491.
[3] FAN Xiaoliang, PENG Zhaopeng, ZHENG Chuanpan, WANG Cheng. Spatio-temporal correlation mining method for large-scale traffic networks[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1317-1325.
[4] ZHU Wuxiang, LIAO Jingqiu, ZHAN Ziliang, TAN Zhijia. Systematic review and future perspectives of financial distress prediction studies: Back to the principle of finance[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1467-1482.
[5] DAI Xin, HUANG Hong, JI Xinyu, WANG Wei. Spatiotemporal rapid prediction model of urban rainstorm waterlogging based on machine learning[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 865-873.
[6] REN Jianqiang, CUI Yapeng, NI Shunjiang. Prediction method of the pandemic trend of COVID-19 based on machine learning[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 1003-1011.
[7] LIU Jiangfan, GE Bing, LI Shanshan, LU Xiang. A prediction method for wall cooling efficiency of combustor chamber based on neural network[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 681-690.
[8] GUO Shiyuan, MA Weizhi, LU Ruilin, LIU Jinlong, YANG Zhigang, WANG Zhongjing, ZHANG Min. Prediction of canal discharge under complex conditions based on a long short-term memory neural network[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(12): 1924-1934.
[9] ZHAO Zeheng, ZHAO Jinsong. Remaining useful life prediction of fan belts based on destructive experiments and autoencoders[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1458-1466.
[10] HUANG Yonghao, YANG Xinmiao, YUE Jintao. Urban street bicycle flow analysis based on multi-scale geographically weighted regression model[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(7): 1132-1141.
[11] CHEN Chuangang, HU Jinqiu, HAN Zicong, CHEN Yiyue, XIAO Shangrui. Knowledge graph based early warning method for accident evolution in natural gas pipeline station abroad for harsh environmental conditions[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(6): 1081-1087.
[12] WANG Chunyan, ZHANG Jingxiang, LONG Jie, LIU Yi. Panel data regression model for identifying the spatiotemporal characteristics and key factors influencing household water-energy consumption[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 614-626.
[13] LEI Zheng, JIANG Peng, WANG Qiming. Prognostics health management system for FAST actuators[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(11): 1796-1802.
[14] SHAO Rui, SHAO Weiwei, SU Xin, YANG Zhiyong, LIU Jiahong. Impact of various flood scenarios on urban emergency responses times based on the TELEMAC-2D model[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 60-69.
[15] YU Hongwei, ZHOU Dongbo, XU Wenhui, YU Yaying, WANG Xiaomei, TU Yue. Daily behavior prediction of college students on campus based on multifragment semantic spatiotemporal graph convolutional network[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 105-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd