Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2016, Vol. 56 Issue (3) : 312-317     DOI: 10.16511/j.cnki.qhdxxb.2016.21.022
NUCLEAR AND NEW ENERGY ENGINEERING |
Adsorption of uranium (Ⅵ) by activated carbon from radioactive wastewater
YU Jing1,2, WANG Jianlong1,3, JIANG Yizhou2
1. Collaborative Innovation Center for Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
2. Northwest Institute of Nuclear Technology, Xi'an 710024, China;
3. Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, China
Download: PDF(1829 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The adsorption of uranium from wastewater onto activated carbon was investigated in batch experiments. Four independent variables, the contact time, solution pHa, initial uranium concentration and temperature, were varied to determine the influence of these parameters on the adsorption of the uranium from water. The activated carbon size were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), with the element content characterized by energy dispersive X-ray spectrometer (EDS) and surface functional groups characterized by infrared spectrocopy (FTIR). The FTIR spectra indicated that hydroxyl groups are present on the surface of the activated carbon and affected the adsorption. The U(Ⅵ) adsorption onto activated carbon reached sorption equilibrium within 30 min. The adsorption of U(Ⅵ) on activated carbon was strongly dependent on the pHa in the range of 3.0~9.0. The adsorption capacity and removal percent increase for pHa from 3 to 5, decrease for pHa=5~7, and then increase quickly for pHa=7~9. The U(Ⅵ) adsorption on activated carbon is well described by a pseudo-second-order kinetic model and the Tempkin, Slip, and D-R isotherm models. The sorption reaction is spontaneous, exothermic and increases the entropy. The maxmium adsorption capacity is 62.50 mg·g-1. The maxmium removal rate is 99.23%.
Keywords activated carbon      U(Ⅵ)      adsorption      radioactive wastewater     
ZTFLH:  O615.2  
Issue Date: 15 March 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Jing
WANG Jianlong
JIANG Yizhou
Cite this article:   
YU Jing,WANG Jianlong,JIANG Yizhou. Adsorption of uranium (Ⅵ) by activated carbon from radioactive wastewater[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(3): 312-317.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2016.21.022     OR     http://jst.tsinghuajournals.com/EN/Y2016/V56/I3/312
  
  
  
  
  
  
  
  
  
  
  
  
[1] Wang J L, Chen C. Biosorbents for heavy metals removal and their future[J]. Biotechnology advances, 2009, 27(2):195-226.
[2] 徐乐昌, 张国甫, 高洁, 等. 铀矿冶废水的循环利用和处理[J]. 铀矿冶, 2010, 29(2):78-81.XU Lechang, ZHANG Guofu, GAO Jie, et al. Recycl ing and reuse of wastewater from uranium mining and milling[J]. Uranium Mining and Metallurgy, 2010, 29(2):78-81. (in Chinese)
[3] 杜良, 李烨, 王萍, 等. 铀污染土壤生物修复研究进展[J]. 环境工程, 2013, 31(增刊):543-546.DU Liang, LI Hua, WANG Ping, et al. Research progress of bioremediation of contaminated soil by uranium[J]. Environmental Engineering, 2013, 31(Suppl):543-546. (in Chinese)
[4] 李小燕, 张明, 刘义保, 等. 花生壳活性炭吸附溶液中的铀[J]. 化工环保, 2013, 33(3):202-205.LI Xiaoyan, ZHANG Ming, LIU Yibao, et al. Adsorption of uranium from aqueous solution with peanut shell activated carbon[J]. Environmental protection of chemical industry, 2013, 33(3):202-205. (in Chinese)
[5] Kutahyali C, Eral M. Selective adsorption of uranium from aqueous solutions using activated carbon prepared from charcoal by chemical activation[J]. Separation and Purification Technology, 2004, 40:109-114.
[6] Kutahyali C, Eral M. Sorption studies of uranium and thorium on activated carbon prepared from olive stones:Kinetic and thermodynamic aspects[J]. Journal of Nuclear Materials, 2010(396):251-256.
[7] Mellah A, Chegrouche S, Barkat M. The removal of uranium(Ⅵ) from aqueous solutions onto activated carbon:Kinetic and thermodynamic investigations[J]. Journal of Colloid and Interface Science, 2006(296):434-441.
[8] Yakout S M, Metwally S S, Zakla T E. Uranium sorption onto activated carbon prepared from rice straw:Competition with humic acids[J]. Applied Surface Science, 2013(280):745-750.
[9] Ahmed S H, Sharaby C M, EI Gammal M E. Uranium extraction from sulfuric acid medium using trioctylamine impregnated activated carbon[J]. Hydrometallurgy, 2013(134-135):150-157.
[10] Lei F A, Fan F L, Bai J, et al. Sorption of uranium with functionalized nanoporous carbons[J]. IMP & HIRFL Annual Report, 2009(2-38):73-74.
[11] Zhao Y S, Liu C X, Feng M, et al. Solid phase extraction of uranium(VI) onto benzoylthiourea-anchored activated carbon[J]. Journal of Hazardous Materials, 2010(176):119-124.
[12] Mayyasa M, Harahsheh M A, Wei X Y. Solid phase extractive preconcentration of uranium from Jordanian phosphoric acid using 2-hydroxy-4-aminotriazine-anchored activated carbon[J]. Hydrometallurgy, 2014(149):41-49.
[13] Liu Y H, Wang Y Q, Zhang Z B, et al. Removal of uranium from aqueous solution by a low cost and high-efficient adsorbent[J]. Applied Surface Science, 2013(273):68-74.
[14] Kumar S, Loganathan V A, Gupta R B, et al. An assessment of U(Ⅵ) removal from groundwater using biochar produced from hydrothermal carbonization[J]. J Environmental Management, 2011(92):2504-2512.
[15] Li B, Ma L J, Tian Yin, et al. A catechol-like phenolic ligand-functionalized hydrothermal carbon:One-pot synthesis, characterization and sorption behavior toward uranium[J]. J Hazardous Materials, 2014(271):41-49.
[16] Fasfous I I, Dawoud J N. Uranium(Ⅵ) sorption by multiwalled carbon nanotubes from aqueous solution[J]. Applied Surface Science, 2012(259):433-440.
[17] 陈玉伟. 磁性壳聚糖吸附重金属及核素的特性和机理研究[D]. 北京:清华大学, 2011.CHEN Yuwei. Characteristics and Mechanism of Heavy Metal and Nuclide Sorption by Magnetic Chitosan[D]. Beijing:Tsinghua University, 2011. (in Chinese)
[1] ZHAO Li, HE Chang, SHU Yidan, CHEN Qinglin, ZHANG Bingjian. Monte Carlo simulation of propylene/propane adsorption thermodynamics on molecular sieves[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(5): 714-722.
[2] LI Shuang, SHI Yixiang, CAI Ningsheng. Progress in hydrogen production from fossil fuels and renewable energy sources for the green energy revolution[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(4): 655-662.
[3] DENG Chun, ZHOU Yeyang, JIANG Wei, FENG Xiao. Coordinated optimization of hydrogen networks with purification reuse coupled with a shortcut model of the pressure swing adsorption[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(7): 735-742.
[4] YANG Shaoxia, ZHANG Jingjing, YANG Hongwei, ZHANG Li, GAO Pan. Adsorption of ammonia-nitrogen on ion exchange resins[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(6): 660-665.
[5] Hongwei YANG, Haoyu WANG, Yunxia LIU, Wenjun LIU, Shaoxia YANG. Ozone-biological activated carbon treatment of DBP in high-bromide water[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 607-612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd