Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2016, Vol. 56 Issue (3) : 273-280     DOI: 10.16511/j.cnki.qhdxxb.2016.21.024
AUTO MATION |
On-road trajectory planning based on optimal computing budget allocation
FU Xiaoxin1, JIANG Yongheng1, HUANG Dexian1, WANG Jingchun1, HUANG Kaisheng2
1. Department of Automation, Tsinghua University, Beijing 100084, China;
2. Department of Automotive Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(1167 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  This paper presents an algorithm named OCBA_OODE for on-road trajectory planning by using optimal computing budget allocation (OCBA) in a candidate-curve-based planning algorithm named OODE. OODE picks the best trajectory by comparing rough (biased but computationally inexpensive) evaluations of a set of candidate curves. The curve evaluation converges to the real value as the computing budget increases. OODE allocates the equal parts of the computing budget to each curve, while OCBA_OODE repeatedly allocates the budget according to the latest curve evaluations to improve the planning efficiency. OCBA_OODE is 20% faster than OODE while maintaining the same solution quality.
Keywords optimal computing budget allocation      trajectory planning      intelligent vehicles      ordinal optimization     
ZTFLH:  TP242.6  
Issue Date: 15 March 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FU Xiaoxin
JIANG Yongheng
HUANG Dexian
WANG Jingchun
HUANG Kaisheng
Cite this article:   
FU Xiaoxin,JIANG Yongheng,HUANG Dexian, et al. On-road trajectory planning based on optimal computing budget allocation[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(3): 273-280.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2016.21.024     OR     http://jst.tsinghuajournals.com/EN/Y2016/V56/I3/273
  
  
  
  
  
  
  
  
  
  
[1] Karaman S, Frazzoli E. Sampling-based algorithms for optimal motion planning[J]. The International Journal of Robotics Research, 2011, 30(7):846-894.
[2] Gehrig S K, Stein F J. Collision avoidance for vehicle-following systems[J]. Intelligent Transportation Systems, IEEE Transactions on, 2007, 8(2):233-244.
[3] Brandt T, Sattel T, Wallaschek J. Towards vehicle trajectory planning for collision avoidance based on elastic bands[J]. International Journal of Vehicle Autonomous Systems, 2007, 5(1-2):28-46.
[4] McNaughton M, Urmson C, Dolan J M, et al. Motion planning for autonomous driving with a conformal spatiotemporal lattice[C]//Robotics and Automation (ICRA), 2011 IEEE International Conference on. Shanghai, China:IEEE Press, 2011:4889-4895.
[5] Ziegler J, Stiller C. Spatiotemporal state lattices for fast trajectory planning in dynamic on-road driving scenarios[C]//Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on. IEEE Press, 2009:1879-1884.
[6] Ma L, Xue J, Kawabata K, et al. Efficient sampling-based motion planning for on-road autonomous driving[J]. Intelligent Transportation Systems, IEEE Transactions on, 2015, 16(4):1961-1976.
[7] Kuwata Y, Karaman S, Teo J, et al. Real-time motion planning with applications to autonomous urban driving[J]. Control Systems Technology, IEEE Transactions on, 2009, 17(5):1105-1118.
[8] Lin C F, Juang J C, Li K R. Active collision avoidance system for steering control of autonomous vehicles[J]. Intelligent Transport Systems, IET, 2014, 8(6):550-557.
[9] Papadimitriou I, Tomizuka M. Fast lane changing computations using polynomials[C]//American Control Conference, 2003. Proceedings of the 2003. Denver, CO, USA:IEEE Press, 2003:48-53 vol.1.
[10] 付骁鑫, 江永亨, 黄德先, 等. 一种新的实时智能汽车轨迹规划方法[J]. 控制与决策, 2015, 30(10):1751-1758. FU Xiaoxin, Jiang Yongheng, Huang Dexian, et al. A novel real-time trajectory planning algorithm for intelligent vehicles[J]. Control and Decision, 2015, 30(10):1751-1758. (in Chinese)
[11] Chen C, Lin J, Yücesan E, et al. Simulation budget allocation for further enhancing the efficiency of ordinal optimization[J]. Discrete Event Dynamic Systems, 2000, 10(3):251-270.
[12] Ho Y, Zhao Q, Jia Q. Ordinal Optimization:Soft Optimization for Hard Problems[M]. New York:Springer US, 2007.
[13] Bai L, Jiang Y, Huang D. A novel two-level optimization framework based on constrained ordinal optimization and evolutionary algorithms for scheduling of multipipeline crude oil blending[J]. Industrial & Engineering Chemistry Research, 2012, 51(26):9078-9093.
[1] LIU Anbang, CHEN Xi, ZHAO Qianchuan, LI Borui. Optimization method for allocations of energy storage systems and tractions for metro systems[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1408-1414.
[2] JIANG Shuai, SONG Libin, CHEN Xiaoyong, ZHANG Peng, LIU Kecheng, CHANG Junhu. Special automatic spraying system for civil aircraft parts based on visual recognition[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(10): 1650-1657.
[3] GUO Jichang, ZHU Zhiming, WANG Xin, MA Guorui. Numerical solution of the inverse kinematics and trajectory planning for an all-position welding robot[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(3): 292-297.
[4] ZHU Zhiming, GUO Jichang, MA Guorui, LIU Bo. Kinematics analysis and trajectory planning for a welding robot for girth welding of box-type steel structures[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(8): 785-791.
[5] Junyi SHAO,Chuanqing ZHANG,Yan CHEN,Ken CHEN. Trajectory planning for redundant robots for internal surface spraying[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(6): 799-804.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd