Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2016, Vol. 56 Issue (3) : 287-293     DOI: 10.16511/j.cnki.qhdxxb.2016.21.034
AUTO MATION |
Assessment of the level of congestion based on natural language processing
CHEN Hongxin1, CUI Jian1, ZHANG Zuo1,2, YAO Danya1
1. Department of Automation, Tsinghua University, Beijing 100084, China;
2. Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China
Download: PDF(1108 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  In recent years, an increasing amount of traffic information has been posted on social media such as micro-blogs. This information provides a new opportunity for traffic analysis using micro-blog traffic data to supplement traditional traffic data. The micro-blog data has been analyzed to identify frequently-used natural language description of traffic conditions with fuzzy assessments used to quantify the subjective feelings of different people describing traffic congestion with natural language. The fuzzy reasoning data fusion method aggregated evaluations by different people describing the congestion of the same section of a road. Videos were collected from three road segments with observers invited to evaluate the road traffic conditions in the videos. The integration results are similar to the real-time traffic scenarios released by Baidu Map, which verify the feasibility of this fuzzy method.
Keywords transportation engineering      assessment method      fuzzy reasoning      natural language     
ZTFLH:  U491.25  
Issue Date: 15 March 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Hongxin
CUI Jian
ZHANG Zuo
YAO Danya
Cite this article:   
CHEN Hongxin,CUI Jian,ZHANG Zuo, et al. Assessment of the level of congestion based on natural language processing[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(3): 287-293.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2016.21.034     OR     http://jst.tsinghuajournals.com/EN/Y2016/V56/I3/287
  
  
  
  
  
  
[1] 祝付玲. 城市道路交通拥堵评价指标体系研究[D]. 南京:东南大学, 2006.ZHU Fuling. Research on Index System of Urban Traffic Congestion Measures[D]. Nanjing:Southeast University, 2006. (in Chinese)
[2] Schrank D L, Lomax T J. The 2007 Urban Mobility Report[M]. Texas, USA:Texas Transportation Institute, Texas A & M University, 2007.
[3] Transportation Research Board. Highway Capacity Manual[M]. Washington DC, USA:TRB, National Research Council, 2000.
[4] JTG B01-2003, 公路工程技术标准[S]. 北京:中华人民共和国交通运输部, 2003.JTGB01-2003, Highway Technical Standard[S]. Beijing:Ministry of Transportation of the People's Republic of China, 2003. (in Chinese)
[5] 饭田恭敬编著. 《交通工程学》[M]. 邵春福, 杨海, 石其信, 等译. 北京:人民交通出版社, 1994.Iida Yasukyung. Traffic Engineering[M]. Shao Chunfu, YANG Hai, SHI Qixin, et al. Trans. Beijing:China Communications Press, 1994. (in Chinese)
[6] Quiroga C A. Performance measures and data requirements for congestion management systems[J]. Transportation Research Part C:Emerging Technologies, 2000, 8(1):287-306.
[7] J. d'Abadie R R, Ehrlich T F. Contrasting time-based and distance-based measures for quantifying traffic congestion levels:Analysis ofNew Jersey Counties[J]. Transportation Research Record:Journal of the Transportation Research Board, 2002(1817):143-148.
[8] 公安部, 建设部. 城市道路交通管理评价指标体系(2002年版)各类城市评价指标明细表[J]. 道路交通管理. 2002(6):45-46.Ministry of Public Security, Ministry of Construction. The Evaluation Index System of Urban Road Traffic Management (2002 Edition)-Urban Evaluation Index[J]. Road Traffic Management. 2002(6):45-46. (in Chinese)
[9] DB11T 785-2011, 城市道路交通运行评价指标体系[S]. 北京:北京市交通委员会, 2011.DB11T 785-2011, Urban Road Traffic Performance Index[S]. Beijing:Beijing Municipal Commission of Transport, 2011. (in Chinese)
[10] 北京交通发展研究中心, 北京四通智能交通系统集成有限公司, 北京交通大学. 交通拥堵评价研究报告, k06006[R]. 北京:北京交通发展研究中心、北京四通智能交通系统集成有限公司、北京交通大学, 2007.Beijing Transportation Research Center, Beijing Stone Intelligent Transportation System Integration Co., LTD, Beijing Jiaotong University. Traffic Congestion Evaluation, k06006[R]. Beijing:Beijing Transportation Research Center, Beijing Stone Intelligent Transportation System Integration Co., LTD, Beijing Jiaotong University, 2007(in Chinese)
[11] 郭继孚, 刘梦涵, 于雷等. 北京市交通拥堵宏观评价指标体系开发及其应用[C]//2007第三届中国智能交通年会. 南京:东南大学出版社, 2007:341-346.GUO Jifu, LIU Menghan, YU Lei, et al. Development and applications of macroscopic measurement of traffic congestion in Beijing[C]//The 3rd China Annual Conference on ITS 2007. Nanjing:Southeast University Press, 2007:341-346. (in Chinese)
[12] 全永燊, 郭继孚, 关积珍等. 交通拥堵评价研究及北京交通拥堵评价的实证分析[C]//2007第三届中国智能交通年会. 南京:东南大学出版社, 2007:1-6.QUAN Yongshen, GUO Jifu, GUAN Jizhen, et al. Research on traffic congestion evaluation and empirical analysis of Beijing[C]//The 3rd China Annual Conference on ITS 2007. Nanjing:Southeast University Press, 2007:1-6. (in Chinese)
[13] 张雪莲, 于雷, 刘梦涵. 基于交通需求的路网交通拥堵评价模型[J]. 现代交通技术, 2008, 5(6):71-75.ZHANG Xuelian, YU Lei, LIU Menghan. Traffic demand-based traffic congestion measurement models for road networks[J]. Modern Transportation Technology, 2008, 5(6):71-75. (in Chinese)
[14] 李洪兴, 汪培庄. 模糊数学[M]. 北京:国防工业出版社, 1993. LI Hongxing, WANG Peizhuang. Fuzzy Mathematics[M]. Beijing:National Defense Industry Press, 1993. (in Chinese)
[15] 李洪兴, 汪培庄. 模糊系统理论与模糊计算机[M]. 北京:科学出版社, 1996.LI Hongxing, WANG Peizhuang. Fuzzy System Theory and Fuzzy Computer[M]. Beijing:Science Press, 1996. (in Chinese)
[1] WANG Yun, HU Min, TA Na, SUN Haitao, GUO Yifeng, ZHOU Wuai, GUO Yu, ZHANG Wanzhe, FENG Jianhua. Large language models and their application in government affairs[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(4): 649-658.
[2] WANG Qingren, WANG Yinzi, ZHONG Hong, ZHANG Yiwen. Chinese-oriented entity recognition method of character vocabulary combination sequence[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1326-1338.
[3] LU Sicong, LI Chunwen. Human-machine conversation system for chatting based on scene and topic[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 952-958.
[4] HU Bin, GENG Tianyu, DENG Geng, DUAN Lei. Faster biomedical named entity recognition based on knowledge distillation[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(9): 936-942.
[5] JIA Xudong, WANG Li. Text classification model based on multi-head attention capsule neworks[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(5): 415-421.
[6] CHEN Lele, HUANG Song, SUN Jinlei, HUI Zhanwei, WU Kaishun. Bug report quality detection based on the BM25 algorithm[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(10): 829-836.
[7] WANG Wenguan, CHEN Yunwen, CAI Hua, ZENG Yanneng, YANG Huiyu. Judicial document intellectual processing using hybrid deep neural networks[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(7): 505-511.
[8] WANG Yuanlong, LI Ru, ZHANG Hu, WANG Zhiqiang. Causal options in Chinese reading comprehension[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(3): 272-278.
[9] LU Zhaolin, LI Shengbo, Schroeder Felix, ZHOU Jichen, CHENG Bo. Driving comfort evaluation of passenger vehicles with natural language processing and improved AHP[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(2): 137-143.
[10] ZHANG Xu, WANG Shengjin. Attributed object detection based on natural language processing[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(11): 1137-1142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd