Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2016, Vol. 56 Issue (9) : 920-924,929     DOI: 10.16511/j.cnki.qhdxxb.2016.21.055
ELECTRONIC ENGINEERING |
Man-made target detection in polarimetric SAR images using the Riemannian kernel Fisher criterion
GAO Wei1, YIN Junjun2, YANG Jian1
1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
2. School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
Download: PDF(2032 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Detection of man-made targets is essential for automatic interpretation of polarimetric synthetic aperture radar (SAR) images. This paper describes a man-made target detection method that utilizes the Riemannian kernel Fisher criterion. The kernel function is constructed by means of a Riemannian metric defined on the manifold of Hermitian positive definite matrices. The polarimetric covariance matrices are mapped into the high-dimensional feature space induced by the kernel function and then discriminated by the Fisher criterion. This method takes into account the special matrix structure of the polarimetric SAR data and does not assume any statistical models; therefore, it is particularly suitable for detecting man-made targets in polarimetric SAR images. The effectiveness of this method is verified in the context of ship detection. Tests show that this method outperforms other detectors, especially for low target-to-clutter ratio.
Keywords polarimetric SAR      man-made target detection      Riemannian manifold      kernel Fisher criterion     
ZTFLH:  TN957.52  
Issue Date: 15 September 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAO Wei
YIN Junjun
YANG Jian
Cite this article:   
GAO Wei,YIN Junjun,YANG Jian. Man-made target detection in polarimetric SAR images using the Riemannian kernel Fisher criterion[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(9): 920-924,929.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2016.21.055     OR     http://jst.tsinghuajournals.com/EN/Y2016/V56/I9/920
  
  
  
  
  
  
[1] Novak L M, Sechtin M B, Cardullo M J. Studies of target detection algorithms that use polarimetric radar data [J]. IEEE Trans Aerosp Electron Syst, 1989, 25(2): 150-165.
[2] Novak L M, Burl M C. Optimal speckle reduction in polarimetric SAR imagery [J]. IEEE Trans Aerosp Electron Syst, 1990, 26(2): 293-305.
[3] Yang J, Yamaguchi Y, Boerner W M, et al. Numerical methods for solving the optimal problem of contrast enhancement [J]. IEEE Trans Geosci Remote Sens, 2000, 38(2): 965-971.
[4] Chaney R D, Bud M C, Novak L M. On the performace of polarimetric target detection algorithms [J]. IEEE Aerosp Electron Syst Mag, 1990, 5(11):10-15.
[5] D'Hondt O, Guillaso S, Hellwich O. Iterative bilateral filtering of polarimetric SAR data [J]. IEEE J Sel Topics Appl Earth Observ Remote Sens, 2013, 6(3): 1628-1639.
[6] Song H, Yang W, Xu X, et al. Unsupervised PolSAR imagery classification based on Jensen-Bregman LogDet divergence [C]//Proceedings of the 10th European Conference on Synthetic Aperture Radar. Berlin, Germany: VDE, 2014: 915-918.
[7] Song H, Yang W, Bai Y, et al. Unsupervised classification of polarimetric SAR imagery using large-scale spectral clustering with spatial constraints [J]. Int J Remote Sens, 2015, 36(11): 2816-2830.
[8] Wang Y, Han C. PolSAR image segmentation by mean shift clustering in the tensor space [J]. Acta Autom Sin, 2010, 36(6): 798-806.
[9] Yang F, Gao W, Xu B, et al. Multi-frequency polarimetric SAR classification based on Riemannian manifold and simultaneous sparse representation [J]. Remote Sens, 2015, 7(7): 8469-8488.
[10] Sra S. Positive definite matrices and the S-divergence [J]. Proc Amer Math Soc, 2015.
[11] Jayasumana S, Hartley R, Salzmann M, et al. Kernel methods on Riemannian manifolds with Gaussian RBF kernels [J]. IEEE Trans Pattern Anal Mach Intell, 2015, 37(12): 2464-2477.
[12] Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis [M]. Cambridge, UK: Cambridge University Press, 2004.
[1] LIU Chun, YANG Jian, XU Feng, FAN Yida. Bridge detection in polarimetric SAR images based on water area tracing[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(12): 1303-1309.
[2] SONG Shengli, YANG Jian. Ship detection in SAR images by robust principle component analysis[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(8): 844-848.
[3] LIU Chun, YIN Junjun, YANG Jian. Small harbor detection in polarimetric SAR images based on coastline feature point merging[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(8): 849-853.
[4] YANG Fan, YANG Jian, YIN junjun, SONG Jianshe. Spill detection based on polarimetric SAR decomposition models[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(8): 854-859.
[5] WANG Zhirui, ZHANG Xudong, XU Jia. Radial velocity estimation based on Radon transforms for SAR images of moving ground targets[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(8): 860-865.
[6] ZHOU Wei, YE Chunmao, JIN Kan, LU Yaobin, YANG Jian. Radar echo generation for hyperbolic frequency-modulation waveforms[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(8): 878-883.
[7] LI Zenghui, CHANG Wen, YANG Jian. Sidelobe suppression of isolated strong scatterers based on extrapolated notch filtering[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(5): 503-507.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd