Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2016, Vol. 56 Issue (2) : 218-222     DOI: 10.16511/j.cnki.qhdxxb.2016.22.012
PRECISION INSTRUMENT |
Algorithm for sub-pixel line width measurement based on the orthogonal Legendre moment
WANG Boxiong, YANG Chunyu, LI Wei, QIN Yao
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084, China
Download: PDF(1093 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Line width measurements are of great importance for detecting small objects. An algorithm is developed for sub-pixel line width measurements based on the orthogonal Legendre moment. The line width is converted into the sum of two different symmetrical line widths. The 0th, 2nd and 4th order orthogonal Legendre moments are used to develop expressions for the symmetrical line widths. Template coefficients of the moments are derived for analyzing digital images and the principle error is analyzed and corrected. Tests of the algorithm for measuring the line widths of standard particles in ampoules show that the algorithm is accurate and efficient.
Keywords line width measurement      Legendre      sub-pixel     
ZTFLH:  TP391  
Issue Date: 15 February 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Boxiong
YANG Chunyu
LI Wei
QIN Yao
Cite this article:   
WANG Boxiong,YANG Chunyu,LI Wei, et al. Algorithm for sub-pixel line width measurement based on the orthogonal Legendre moment[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(2): 218-222.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2016.22.012     OR     http://jst.tsinghuajournals.com/EN/Y2016/V56/I2/218
  
  
  
  
  
  
[1] 蔡茂容. PCB图像线宽线距缺陷检测算法研究 [J]. 微计算机信息, 2009, 25(9): 116-118.CAI Maorong. Study on arithmetic of PCB images inspection of circuitry width and the distance between circuitry [J]. Microcomputer Information, 2009, 25(9): 116-118. (in Chinese)
[2] 秦垚, 王伯雄, 李伟, 等. 应用级联分类器检测安瓿内弱小运动目标 [J]. 光学精密工程, 2012, 20(1): 190-196.QIN Yao, WANG Boxiong, LI Wei, et al. Inspection of small moving foreign substances in ampoule based on cascade classifiers [J]. Optics and Precision Engineering, 2012, 20(1): 190-196. (in Chinese)
[3] 李运祥, 丁卫霞, 苏兰海, 等. 热轧带钢在线测宽中的图像分割 [J]. 北京科技大学学报, 2003, 25(4): 365-369.LI Yunxiang, DING Weixia, SU Lanhai, et al. Image segmentation in on-line width measurement of hot strip [J]. Journal of University of Science and Technology Beijing, 2003, 25(4): 365-369. (in Chinese)
[4] Frischholz R W, Spinnler K P. Class of algorithms for realtime subpixel registration [C]//Proceedings of the SPIE: The International Society for Optical Engineering. Munich: SPIE, 1993: 50-59.
[5] 黎俊, 彭启民, 范植华. 亚像素级图像配准算法研究 [J]. 中国图象图形学报, 2008, 13(11): 2070-2075.LI Jun, PENG Qimin, FAN Zhihua. A survey of sub-pixel image registration methods [J]. Journal of Image and Graphics, 2008, 13(11): 2070-2075. (in Chinese)
[6] Ghosal S, Mehrotra R. Orthogonal moment operators for subpixel edge detection [J]. Pattern Recognition, 1993, 26(2): 295-306.
[7] Teague M R. Image analysis via the general theory of moments [J].Journal of the Optical Society of America, 1980, 70: 920-930.
[8] 魏本征, 赵志敏, 华晋. 基于改进形态学梯度和Zernike矩的亚像素边缘检测方法 [J]. 仪器仪表学报, 2010, 31(4): 838-844. WEI Benzheng, ZHAO Zhimin, HUA Jin. Sub-pixel edge detection method based on improved morphological gradient and Zernike moment [J]. Chinese Journal of Scientific Instrument, 2010, 31(4): 838-844. (in Chinese)
[9] Zenkouar H, Nachit A. Images compression using moments method of orthogonal polynomials [J]. Materials Science and Engineering, 1997, 49(3): 211-215.
[10] 黄荣兵, 杜明辉, 梁帼英, 等. 一种改进的伪Zernike矩快速计算方法 [J]. 华南理工大学学报: 自然科学版, 2009, 37(1): 54-58.HUANG Rongbing, DU Minghui, LIANG Guoying, et al. An improved approach to fast computation of pseudo-Zernike moments [J]. Journal of South China University of Technology: Natural Science Edition, 2009, 37(1): 54-58. (in Chinese)
[11] Hu M-K. Visual pattern recognition by moment invariants [J]. Ire Transactions on Information Theory, 1962, 8(2): 179-187.
[12] 葛云, 章东. 基于Legendre正交矩的配准方法在放疗导航中的应用研究 [J]. 电子学报, 2009, 37(7): 1529-1531.GE Yun, ZHANG Dong. A fast matching way using the Legengre orthogonal moment and application in image guided radiotherapy [J]. Acta Electronica Sinica, 2009, 37(7): 1529-1531. (in Chinese)
[13] 秦垚, 王伯雄, 李伟. 基于液面分割的安瓿内漂浮小目标检测算法 [J]. 清华大学学报: 自然科学版, 2012, 52(1): 21-24.QIN Yao, WANG Boxiong, LI Wei. Floating impurity inspection algorithm in ampoule based on liquid level segmentation [J]. Journal of Tsinghua University: Science and Technology, 2012, 52(1): 21-24. (in Chinese)
[1] ZHU Wuxiang, LIAO Jingqiu, ZHAN Ziliang, TAN Zhijia. Systematic review and future perspectives of financial distress prediction studies: Back to the principle of finance[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1467-1482.
[2] NURMEMET Yolwas, LIU Junhua, WUSHOUR Silamu, REYIMAN Tursun, DAWEL Abilhayer. Crosslingual acoustic modeling in Uyghur speech recognition[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(4): 342-346.
[3] AISIKAER Rouzi, WANG Dong, LI Lantian, ZHENG Fang, ZHANG Xiaodong, JIN Panshi. Score domain speaking rate normalization for speaker recognition[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(4): 337-341.
[4] SHEN Fangyao, DAI Guojun, DAI Chenglei, GUO Hongjie, ZHANG Hua. CTR prediction for online advertising based on a features conjunction model[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(4): 374-379.
[5] ZHENG Jun, LI Wenqing. Calibration of 3-D measurement system based on a double position sensitive detectors[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(4): 411-416.
[6] ZHANG Jing, HUANG Degen, HUANG Kaiyu, LIU Zhuang, MENG Xiangzhu. λ-active learning based microblog-oriented Chinese word segmentation[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(3): 260-265.
[7] WANG Yuanlong, LI Ru, ZHANG Hu, WANG Zhiqiang. Causal options in Chinese reading comprehension[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(3): 272-278.
[8] YANG Qianwen, SUN Fuchun. Remote sensing image recognition based on generalized regularized auto-encoders[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(2): 113-121.
[9] ZHANG Yangsen, ZHENG Jia, HUANG Gaijuan, JIANG Yuru. Microblog sentiment analysis method based on a double attention model[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(2): 122-130.
[10] YI Jiangyan, TAO Jianhua, LIU Bin, WEN Zhengqi. Transfer learning for acoustic modeling of noise robust speech recognition[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(1): 55-60.
[11] Hankiz Yilahun, Gulmire Imam, Maynur Ablitip, Guljamal Mamateli, Askar Hamdulla. Undulating scale of intonations of exclamatory Uyghur sentences[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(12): 1254-1258.
[12] ZENG Xiang, YANG Zhebiao, XU Zhen, LU Xinzheng. Fire spread simulations of building groups in rural areas[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(12): 1331-1337.
[13] TIAN Chuan, YE Xiaojun, WANG Zuliang, LI Xin. Multi-tag identification and collision avoidance with RFIDs in blood management[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(11): 1121-1126.
[14] LU Wenhuan, QU Yuexin, YANG Yalong, WANG Jianrong, DANG Jianwu. Hybrid feature extraction from ultrasound images for a silent speech interface[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(11): 1159-1162,1169.
[15] ZHANG Min, DING Biyuan, MA Weizhi, TAN Yunzhi, LIU Yiqun, MA Shaoping. Hybrid recommendation approach enhanced by deep learning[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(10): 1014-1021.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd