Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2016, Vol. 56 Issue (6) : 633-639     DOI: 10.16511/j.cnki.qhdxxb.2016.22.024
MECHANICAL ENGINEERING |
Compliance calculation method for planar flexure-based mechanisms
DU Yunsong, LI Tiemin, JIANG Yao, ZHANG Jinglei
Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(1330 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Flexure-based mechanisms are widely used in industry as highly precise micro-motion mechanisms. This paper presents a compliance calculation method for planar flexure-based mechanisms. The compliance of flexure hinges is used to relate the deformations to the loads on flexure member with the end-effector motion obtained using the virtual work principle. Then, a matrix method is used to derive concise compliance equations for serial and parallel flexure mechanisms. The compliance and the relationship between the compliance terms and variable geometric parameters are analyzed for three typical flexure-based mechanisms. The model results compare well with finite element method (FEM) predictions with a maximum difference of 7% and an average difference of 3%. This method provides theoretical and technical support for the design and optimization of flexure-based mechanisms.
Keywords flexure-based mechanisms      compliance      matrix method     
ZTFLH:  TH112  
Issue Date: 15 June 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DU Yunsong
LI Tiemin
JIANG Yao
ZHANG Jinglei
Cite this article:   
DU Yunsong,LI Tiemin,JIANG Yao, et al. Compliance calculation method for planar flexure-based mechanisms[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(6): 633-639.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2016.22.024     OR     http://jst.tsinghuajournals.com/EN/Y2016/V56/I6/633
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] Lobontiu N. Compliant Mechanisms: Design of Flexure Hinges [M]. Boca Raton, FL: CRC Press, 2010.
[2] Yao Q, Dong J, Ferreira P M. Design, analysis, fabrication and testing of a parallel-kinematic micropositioning XY stage [J]. International Journal of Machine Tools and Manufacture, 2007, 47(6): 946-961.
[3] Zubir M N M, Shirinzadeh B, Tian Y. Development of a novel flexure-based microgripper for high precision micro-object manipulation [J]. Sensors and Actuators A: Physical, 2009, 150(2): 257-266.
[4] 贠远, 徐青松, 李杨民. 并联微操作机器人技术及应用进展 [J]. 机械工程学报, 2009, 44(12): 12-23.YUN Yuan, XU Qingsong, LI Yangmin, et al. Survey on parallel manipulators with micro/nano manipulation technology and applications [J]. Journal of Mechanical Engineering, 2009, 44(12): 12-23. (in Chinese)
[5] 于靖军, 裴旭, 毕树生, 等. 柔性铰链机构设计方法的研究进展 [J]. 机械工程学报, 2010, 46(13): 2-13.YU Jingjun, PEI Xu, BI Shusheng, et al. State-of-arts of design method for flexure mechanisms [J]. Journal of Mechanical Engineering, 2010, 46(13): 2-13. (in Chinese)
[6] Li Y, Xu Q. A novel piezoactuated XY stage with parallel, decoupled, and stacked flexure structure for micro-/ nanopositioning [J]. IEEE Transactions on Industrial Electronics, 2011, 58(8): 3601-3615.
[7] Xiao S, Li Y. Development of a large working range flexure-based 3-DOF micro-parallel manipulator driven by electromagnetic actuators [J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(4): 735-744.
[8] Pei X, Yu J, Zong G, et al. An effective pseudo-rigid-body method for beam-based compliant mechanisms [J]. Precision Engineering, 2010, 34(3): 634-639.
[9] Li Y, Xu Q. Design and analysis of a totally decoupled flexure-based XY parallel micromanipulator [J]. IEEE Transactions on Robotics, 2009, 25(3): 645-657.
[10] Lobontiu N, Paine J S N, Garcia E, et al. Design of symmetric conic-section flexure hinges based on closed-form compliance equations [J]. Mechanism and Machine Theory, 2002, 37(5): 477-498.
[11] Lobontiu N, Paine J S N, Garcia E, et al. Corner-filleted flexure hinges [J]. Journal of Mechanical Design, 2001, 123(3): 346-352.
[12] Pham H H, Chen I M. Stiffness modeling of flexure parallel mechanism [J]. Precision Engineering, 2005, 29(4): 467-478.
[13] Qin Y, Tian Y, Zhang D. Design and dynamic modeling of a 2-DOF decoupled flexure-based mechanism [J]. Chinese Journal of Mechanical Engineering, 2012, 25(4): 688-696.
[14] Lobontiu N. Compliance-based matrix method for modeling the quasi-static response of planar serial flexure-hinge mechanisms [J]. Precision Engineering, 2014, 38(3): 639-650.
[15] Qin Y, Shirinzadeh B, Zhang D, et al. Compliance modeling and analysis of statically indeterminate symmetric flexure structures [J]. Precision Engineering, 2013, 37(2): 415-424.
[16] Jia X, Liu J, Tian Y, et al. Stiffness analysis of a compliant precision positioning stage [J]. Robotica, 2012, 30(6): 925-939.
[1] CHEN Shuqin, LI Tiemin. Assembly of spacecraft components based on adaptive compliance control[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(11): 1808-1819.
[2] LIN Jiarui, GUO Jianfeng. BIM-based automatic compliance checking[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(10): 873-879.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd