AEROSPACE ENGINEERING |
|
|
|
|
|
Multi-rate LDPC encoder for high-speed satellite data transmissions |
GE Guangjun, YIN Liuguo |
Tsinghua National Laboratory for Information Science and Technology, School of Aerospace Engineering, Tsinghua University, Beijing 100084, China |
|
|
Abstract Satellite data transmission systems need high coding gains, multiple rates and high reliability channel coding. A low complexity, high speed encoder is designed for low-density parity-check (LDPC) codes, which reduces the hardware size and improves the encoding speed and reliability. The system reuses hardware resources for codes of various rates and lengths and uses a low-storage architecture and a partially triple-modular-redundant design scheme. Field programmable gate array (FPGA) synthesized results show that the encoder integrates 28 codes with aerospace reinforcement and a maximum encoding speed of 3.2 Gb/s in a Xilinx XC2V3000 FPGA chip. The flip-flop, look-up table (LUT) and RAM costs of the encoder are 24.5%, 34.4% and 11.1% less than that for the traditional scheme. This encoder design scheme will improve satellite data transmission systems.
|
Keywords
low-density parity-check (LDPC) codes
high-speed encoder design
multi-rate integrated
low-complexity
satellite data transmission
|
|
Issue Date: 15 June 2016
|
|
|
[1] 安培浚, 高峰, 曲建生. 对地观测系统未来发展趋势及其技术需求 [J]. 遥感技术与应用, 2007, 22(6): 762-767.AN Peijun, GAO Feng, QU Jiansheng. Trend and technology requirements of Earth observing system [J]. Remote Sensing Technology and Application, 2007, 22(6): 762-767. (in Chinese)
[2] 詹亚峰, 殷柳国, 陆建华. LDPC码技术及其在深空探测中的应用 [C]// 哈尔滨工业大学深空探测基础研究中心. 中国宇航学会深空探测技术专业委员会第一届学术会议论文集. 哈尔滨: 哈尔滨工业大学, 2005: 303-307.ZHAN Yafeng, YIN Liuguo, LU Jianhua. LDPC coding technique and its application on deep-space communications [C]// Deep Space Exploration Research Center, Harbin Institute of Technology. 1st Workshop of the CAS Deep Space Exploration Society. Harbin: Harbin Institute of Technology, 2005: 303-307. (in Chinese)
[3] LI Qi, YIN Liuguo, LU Jianhua. Performance study of a deep space communications system with low-density parity-check coding under solar scintillation [J]. International Journal of Communications, 2012, 6(1): 1-9.
[4] CCSDS. Low Density Parity Check Codes for Use in Near-Earth and Deep Space Applications: CCSDS 131.0-B-2 [S]. Washington, DC: CCSDS, 2011.
[5] 李跃东. LDPC编码技术在FPGA中的实现 [D]. 成都: 成都理工大学, 2012. LI Yuedong. Implement of LDPC Codes in FPGA [D]. Chengdu: Chengdu University of Technology, 2012. (in Chinese)
[6] 常静. 可配置FFT及LDPC编码器的FPGA实现 [D]. 西安: 西安电子科技大学, 2014. CHANG Jing. FPGA Implementation of Configurable FFT and LDPC Encoder [D]. Xi'an: Xidian University, 2014. (in Chinese)
[7] ZHANG Huxing, YU Hongyang. Multi-rate QC-LDPC encoder [C]// ICTD 2009. IEEE Circuits and Systems International Conference on Testing and Diagnosis. Piscataway, NJ: IEEE, 2009: 1-4.
[8] 王刚, 李冰, 刘勇, 等. 一种可重构LDPC编码器的设计与实现 [J]. 微计算机信息, 2010, 26(12-2): 168-170.WANG Gang, LI Bing, LIU Yong, et al. Design and implementation of a reconfigurable LDPC encoder [J]. Micro Computer Information, 2010, 26(12-2): 168-170. (in Chinese)
[9] 许元志. 可配置LDPC码编码器的FPGA设计与实现 [D]. 哈尔滨: 哈尔滨工程大学, 2012. XU Yuanzhi. Design and Implementation of Configurable LDPC Encoder Based on FPGA [D]. Harbin: Harbin Engineering University, 2012. (in Chinese)
[10] WANG Fei, ZHANG Peng, WAN Xin, et al. Design of a multi-rate quasi-cyclic low-density parity-check encoder based on pipelined rotate-left-accumulator circuits [C]// CISP 2014. IEEE International Congress on Image and Signal Processing. Dalian, 2014: 1105-1109.
[11] 张浩, 殷柳国. 星地高速数传系统LDPC编码器ASIC集成芯片设计 [J]. 宇航学报, 2015, 36(1): 96-102.ZHANG Hao, YIN Liuguo. ASIC design of an LDPC encoder for satellite-ground high-speed data transmission system [J]. Journal of Astronautics, 2015, 36(1): 96-102. (in Chinese)
[12] 殷柳国. 低密度奇偶校验码编译码技术研究与应用 [D]. 北京: 清华大学, 2005.YIN Liuguo. Coding Technique and Application Studies on Low-Density Parity-Check (LDPC) Codes [D]. Beijing: Tsinghua University, 2005. (in Chinese)
[13] GUO Jing, XIAO Liyi, MAO Zhigang, et al. Enhanced memory reliability against multiple cell upsets using decimal matrix code [J]. IEEE Transactions on Very Large Scale Integration Systems, 2014, 22(1): 127-135.
[14] Brkic S, Ivanis P, Vasic B. Reliability of memories built from unreliable components under data-dependent gate failures [J]. IEEE Communications Letters, 2015, 19(12): 2098-2101. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|