Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2016, Vol. 56 Issue (10) : 1122-1130     DOI: 10.16511/j.cnki.qhdxxb.2016.22.049
INFORMATIONENGINEERING |
Spatial correlation analysis of Suomi-NPP nighttime light data and GDP data
GUO Yongde1, GAO Jinhuan2, MA Hongbing1
1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
2. School of Government, Peking University, Beijing 100871, China
Download: PDF(1945 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Nighttime light imagery removes most natural disturbances, so nighttime images can be used to reflect human activity, especially for research on spatialization of socio-economic development. This study utilized night-light data collected by the Suomi-NPP satellite in a spatial correlation model with GDP data to analyze both the spatial distribution and factors influencing development. The model extracted the lighting information and calculated night-light indexes to select the best night-light index for each Chinese mainland province. Tests show that the normalized total radiance index relates well to the GDP, so this index is related to the GDP using linear and nonlinear spatial models to develop a model to predict the GDP. The fitting results for the linear, power law and logistic models are all greater than 0.8. The power law model predicts the GDP of each mainland provincial-level region in 2014 with an average relative error of only 26.0%.
Keywords Suomi-NPP      nighttime light data      normalized total radiance index      spatial correlation model     
ZTFLH:  TP753  
Issue Date: 15 October 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Yongde
GAO Jinhuan
MA Hongbing
Cite this article:   
GUO Yongde,GAO Jinhuan,MA Hongbing. Spatial correlation analysis of Suomi-NPP nighttime light data and GDP data[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(10): 1122-1130.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2016.22.049     OR     http://jst.tsinghuajournals.com/EN/Y2016/V56/I10/1122
  
  
  
  
  
  
  
  
[1] 李飞, 张树文, 杨久春, 等. 社会经济数据空间化研究进展 [J]. 地理与地理信息科学, 2014, 30(4): 102-107.LI Fei, ZHANG Shuwen, YANG Jiuchun, et al. A review on research about spatialization of socioeconomic data [J]. Geography and Geo-Information Science, 2014, 30(4): 102-107. (in Chinese)
[2] Elvidge C D, Baugh K E, Kihn E A, et al. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption [J]. International Journal of Remote Sensing, 1997, 18(6): 1373-1379.
[3] Sutton P C, Costanza R. Global estimates of market and non-market values derived from nighttime satellite imagery, land cover, and ecosystem service valuation [J]. Ecological Economics, 2002, 41(3): 509-527.
[4] Ghosh T, Anderson S, Powell R L P L, et al. Estimation of Mexico's informal economy and remittances using nighttime imagery [J]. Remote Sensing, 2009, 1(3): 418-444.
[5] 刘红辉, 江东, 杨小唤, 等. 基于遥感的全国 GDP 1 km 格网的空间化表达 [J]. 地球信息科学学报, 2005, 7(2): 120-123.LIU Honghui, JIANG Dong, YANG Xiaohuan, et al. Spatialization approach to 1 km grid GDP supported by remote sensing [J]. Geo-Information Science, 2005, 7(2): 120-123. (in Chinese)
[6] 韩向娣, 周艺, 王世新, 等. 夜间灯光遥感数据的 GDP 空间化处理方法 [J]. 地球信息科学学报, 2012, 14(1): 128-136.HAN Xiangdi, ZHOU Yi, WANG Shixin, et al. GDP spatialization in China based on nighttime imagery [J]. Journal of Geo-Information Science, 2012, 14(1): 128-136. (in Chinese)
[7] Shi K, Yu B, Huang Y, et al. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: A comparison with DMSP-OLS data [J]. Remote Sensing, 2014, 6(2): 1705-1724.
[8] 柴子为, 王帅磊, 乔纪纲. 基于夜间灯光数据的珠三角地区镇级 GDP 估算[J]. 热带地理, 2015, 35(3): 379-385.CHAI Ziwei, WANG Shuailei, QIAO Jigang. Township GDP estimation of the Pearl River Delta based on the NPP-VIIRS night-time satellite data [J]. Tropical Geography, 2015, 35(3): 379-385. (in Chinese)
[9] Ebbensgaard C L. Urban lighting, light pollution and society [J]. European Planning Studies, 2015, 23(7): 1437-1440.
[10] Patino J E, Duque J C. A review of regional science applications of satellite remote sensing in urban settings [J]. Computers, Environment and Urban Systems, 2013, 37(1): 1-17.
[11] Elvidge C D, Baugh K E, Zhizhin M, et al. Why VIIRS data are superior to DMSP for mapping nighttime lights [J]. Proceedings of the Asia-Pacific Advanced Network, 2013, 35: 62-69.
[12] Baugh K, Hsu F C, Elvidge C D, et al. Nighttime lights compositing using the VIIRS day-night band: Preliminary results [J]. Proceedings of the Asia-Pacific Advanced Network, 2013, 35: 70-86.
[13] Li X, Xu H, Chen X, et al. Potential of NPP-VIIRS nighttime light imagery for modeling the regional economy of China [J]. Remote Sensing, 2013, 5(6): 3057-3081.
[14] 王琪, 袁涛, 郑新奇. 基于夜间灯光数据的中国省域 GDP 总量分析 [J]. 城市发展研究, 2013, 20(7): 44-48.WANG Qi, YUAN Tao, ZHENG Xinqi. GDP gross analysis at province-level in China based on night-time light satellite imagery [J]. Urban Development Studies, 2013, 20(7): 44-48. (in Chinese)
[1] YANG Qianwen, SUN Fuchun. Remote sensing image recognition based on generalized regularized auto-encoders[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(2): 113-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd