Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2016, Vol. 56 Issue (1) : 77-82     DOI: 10.16511/j.cnki.qhdxxb.2016.23.009
INFORMATION SECURITY |
Detecting Android malware phishing login interface based on SURF algorithm
XU Qiang, LIANG Bin, YOU Wei, SHI Wenchang
School of Information, Renmin University of China, Beijing 100872, China
Download: PDF(1925 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  A detection method was developed based on computer vision technology to deal with the malicious application that makes phishing attacks through faking the login interface of the target application. The method detects malicious applications containing phishing login interfaces by measuring the similarities between the current login interface and the target application login interface using the SURF algorithm. A prototype system was implemented on the Android platform to detect phishing login interfaces. The experimental results indicate that the proposed detection method can effectively identify phishing login interfaces.
Keywords phishing      SURF algorithm      Android     
ZTFLH:  TP309.2  
Issue Date: 15 January 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Qiang
LIANG Bin
YOU Wei
SHI Wenchang
Cite this article:   
XU Qiang,LIANG Bin,YOU Wei, et al. Detecting Android malware phishing login interface based on SURF algorithm[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(1): 77-82.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2016.23.009     OR     http://jst.tsinghuajournals.com/EN/Y2016/V56/I1/77
  
  
  
  
  
  
  
  
  
[1] 中国互联网络信息中心. 2013年中国网民信息安全状况研究报告[Z/OL]. (2013-12-19). http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/mtbg/201312/P020131219359905417826.pdf.
[2] Wikipedia. Phishing[EB/OL]. [2014-06-10]. http://en.wikipedia.org/wiki/Phishing.
[3] Szeliski R. Computer: Algorithms and Applications [M]. Springer London Science, 2010.
[4] Lowe D G. Object recognition from local scale-invariant features [C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999, 2: 1150-1157.
[5] Lowe D G. Distinctive image features from scale-invariant key points [J]. International Journal of Computer Vision, 2004, 60: 91-110.
[6] Bay H, Ess A, Tuytelaars T, et al. SURF: Speeded up robust features [C]//9th European Conference on Computer Vision. Computer Vision-ECCV 2006. Graz, Austria: Springer Berlin Heidelberg, 2006: 404-417.
[7] Schmid M. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
[8] 白延柱, 侯喜报. 基于SIFT算子的图像匹配算法研究 [J]. 北京理工大学学报, 2013, 33(6): 622-627.BAI Yanzhu, HOU Xibao. An improved image matching algorithm based on SIFT [J]. Transactions of Beijing Institute of Technology, 2013, 33(6): 622-627. (in Chinese)
[9] OpenCV. Feature Detection and Description [EB/OL]. [2014-06-12]. http://docs.opencv.org/modules/nonfree/doc/feature_detection.html.
[10] 王家林. 细说Android 4.0 NDK编程 [M]. 北京: 电子工业出版社, 2012.WANG Jialin. Elaborating Android 4.0 NDK Programming [M]. Beijing: Publishing House of Electronics Industry, 2012. (in Chinese)
[1] XU Junfeng, WANG Jiajie, ZHU Kelei, ZHANG Puhan, MA Yufei. Credit index measurement method for Android application security based on AHP[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(2): 131-136.
[2] SHEN Ke, YE Xiaojun, LIU Xiaonan, LI Bin. Android App behavior-intent inference based on API usage analysis[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(11): 1139-1144.
[3] HAN Xinhui, DING Yijing, WANG Dongqi, LI Tongxin, YE Zhiyuan. Android malicious AD threat analysis and detection techniques[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(5): 468-477.
[4] LI Zhoujun, WU Chunming, WANG Xiao. Assessment of Android application's risk behavior based on a sandbox system[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(5): 453-460.
[5] DONG Guowei, WANG Meilin, SHAO Shuai, ZHU Longhua. Android application security vulnerability analysis framework based on feature matching[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(5): 461-467.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd