Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2016, Vol. 56 Issue (4) : 387-393     DOI: 10.16511/j.cnki.qhdxxb.2016.24.008
HYDRAULIC ENGINEERING |
Numerical simulation of the hydraulic characteristics of hilly irrigation systems
LIU Jiahong1, ZHOU Jinjun1,2, WANG Hao1,3, LV Hongxing2
1. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China;
2. College of Water Resources and Architectural Engineering, Northwest Agriculture and Forestry University, Yangling 712100, China;
3. Research Center for Water Resources and Hydro-ecological Engineering, Ministry of Water Resources, Beijing 100044, China
Download: PDF(2057 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The hydraulic characteristics of pressurized pipelines are important for irrigation system designs. The hydrodynamics irrigation pipes in a hilly terrain were analyzed here using a computational fluid dynamics model. The energy losses in the pipeline were calculated with the input discharge as the control variable. The relationship between the Reynolds number and flow resistance coefficient of a convex section (a 135° elbow) was analyzed. The pressure and velocity distributions are presented for the pipeline. The results show that:1) when the Reynolds number is less than 5.0×104, the flow coefficient of the elbow decreases rapidly with increasing Reynolds number; 2) when the Reynolds number is more than 7.0×104, the flow coefficient is nearly constant; 3) when the Reynolds number is in the range of 2.3×104 and 7.0×104, the flow coefficient ranges in 4.12~0.37. The pressure on the backside of the elbow is high, while the inside pressure is low. The velocity distribution is just the opposite with a low velocity near the backside of the elbow and higher velocities near the inside.
Keywords hilly irrigation systems      flow coefficient      Reynolds number      computational fluid dynamics     
ZTFLH:  TV134  
Issue Date: 15 April 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Jiahong
ZHOU Jinjun
WANG Hao
LV Hongxing
Cite this article:   
LIU Jiahong,ZHOU Jinjun,WANG Hao, et al. Numerical simulation of the hydraulic characteristics of hilly irrigation systems[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(4): 387-393.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2016.24.008     OR     http://jst.tsinghuajournals.com/EN/Y2016/V56/I4/387
  
  
  
  
  
  
  
[1] 刘竹溪, 刘光临. 泵站水锤的防护措施及其简易计算(上)[J]. 农田水利与小水电, 1984, 59(5):32-37.LIU Zhuxi, LIU Guanglin. Pumping water hammer protection measures and simple calculation[J]. Irrigation and Water Conservancy and Hydropower, 1984, 59(5):32-37. (in Chinese)
[2] 索丽生. 锥管水击计算的特征线法[J]. 水力发电学报, 1997, 58(3):61-68.SUO Lisheng. Method of characteristics for computation of water hammer in conical tubes[J]. Journal of Hydroelectric Engineering, 1997, 58(3):61-68. (in Chinese)
[3] 杨玉思, 徐艳艳, 羡巨智. 长距离高扬程多起伏输水管道水锤防护的研究[J]. 给水排水, 2009, 45(4):108-111.YANG Yusi, XU Yanyan, XIAN Juzhi. Research on water hammer prevention in high-lift, hilly and long distance water transmission pipeline[J]. Water & Wastewater Engineering, 2009, 45(4):108-111. (in Chinese)
[4] 万五一. 长距离输水系统的非恒定流特性研究[D]. 天津:天津大学, 2004.WAN Wuyi. Study on Unsteady Flow in Long-Distance Water Diversion Projects[D]. Tianjin:Tianjin University, 2004. (in Chinese)
[5] 文俊, 刁明军, 李斌华, 等. 90°圆形弯管三维紊流是指模拟[J]. 四川水力发电, 2008, 27(2):111-113.WEN Jun, DIAO Mingjun, LI Binhua, et al. Numerical simulation on three-dimensional turbulent of 90° circular bends[J]. Sichuan Water Power, 2008, 27(2):111-113. (in Chinese)
[6] 陈江林, 吕宏兴, 石喜, 等. T型三通管水力特性的数值模拟与实验研究[J]. 农业工程学报, 2012, 28(5):73-77.CHEN Jianglin, LV Hongxing, SHI Xi, et al. Numerical simulation and experimental study on hydrodynamic characteristics of T-type[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5):73-77. (in Chinese)
[7] 李文全, 杨祖欣, 游强强, 等. 井筒式潜水轴流泵出水管道水力特性数值模拟研究[J]. 水电能源科学, 2013, 31(1):150-153.LI Wenquan, YANG Zuxin, YOU Qiangqiang, et al. Numerical simulation of hydraulic characteristics of water outflow pipe of well-type submerged axial flow pump[J]. Water Resources and Power, 2013, 31(1):150-153. (in Chinese)
[8] 王梦婷, 李琳, 谭义海, 等. 正虹吸管道水力特性试验研究, [J]. 水电能源科学, 2014, 32(12):87-91.WANG Mengting, LI Lin, TAN Yihai, et al. Hydraulic model test research of new pressure regulating device for small and medium diversion type hydropower station[J]. Water Resources and Power, 2014, 32(12):87-91. (in Chinese)
[9] 严继松, 廖国玲. 有压管道充水过程水力特性三维数值模拟[J]. 水利水电技术, 2015, 46(3):110-114. YAN Jisong, LIAO Guoling. 3-D numerical simulation on hydraulic characteristics of water filling process of pressure pipeline[J]. Water Resources and Hydropower Engineering, 2015, 46(3):110-114. (in Chinese)
[10] 郑文玲, 张耀哲, 杨石磊, 等. 异形岔管水力特性的数值模拟[J]. 西北农林科技大学学报:自然科学版, 2014, 42(11):183-190.ZHENG Wenling, ZHANG Yaozhe, YANG Shilei, et al. Numerical simulation of hydraulic characteristics in heterotypic bifurcated pipe[J]. Journal of Northwest Agriculture and Forestry University:Natural Science Edition, 2014, 42(11):183-190. (in Chinese)
[11] 石喜. 灌溉管网非恒定流计算及应用研究[D]. 杨凌:西北农林科技大学, 2013.SHI Xi. Research on Caculation and Application of Unsteady Flow in Irrigation Network[D]. Yangling:Northwest Agriculture and Forestry University, 2013. (in Chinese)
[12] 周晋军, 吕宏兴, 朱德兰. 山地灌溉管道含气囊运动的水力特性研究[J]. 人民黄河, 2013, 35(12):101-103.ZHOU Jinjun, LV Hongxing, ZHU Delan. Research on hydraulic characteristics of mountainous irrigation pipe with air movement[J]. Yellow River, 2013, 35(12):101-103. (in Chinese)
[13] Strowger E B, Derr S L. Speed changes of hydraulic turbines for sudden changes of load[J]. Journal of Turbomachinery, 1926, 48:209-262.
[14] Wood F M. Discussion of speed changes of hydraulic turbines for sudden changes of load[J]. Journal of Turbomachinery, 1926, 48:56-68.
[15] Jayaraj K, Ganesan N, Padmanabhan C. A new finite element formulation based on the velocity of flow for water hammer problems[J]. International Journal of Pressure Vessels and Piping, 2005, 82:1-14.
[16] Afshar M H, Rohani M. Water hammer simulation by implicit method of characteristic[J]. International Journal of Pressure Vessels and Piping, 2008, 85:851-859
[17] Estrada C, Gonzalez C, Aliod R, et al. Improved pressurized pipe network hydraulic solver for applications in irrigation systems[J]. Journal of Irrigation and Drainage Engineering, 2009, 135:421-430.
[18] 王福军. 计算流体动力学分析——CFD软件原理与应用[M]. 北京:清华大学出版社, 2004. WANG Fujun. Computational Fluid Dynamics Analysis——Software of CFD Principles and Applications[M]. Beijing:Tsinghua University Press, 2004. (in Chinese)
[19] 吕宏兴, 裴国霞, 杨玲霞. 水力学[M]. 北京:中国农业出版社, 2002. LV Hongxing, PEI Guoxia, YANG Lingxia. Hydraulics[M]. Beijing:China Agriculture Press, 2002. (in Chinese)
[1] GAO Qiaodong, LEI Fulin, ZHANG Zhedian. Automatic generation method of a chemical reactor network for predicting NOx emissions[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(4): 612-622.
[2] FENG Rui, LIU Yu, ZHANG Zhang, HE Qingsong, WU Zhuo, TENG Haishan, JIA He. Numerical study on the aerodynamics of a rocket fairing half in the continuum regime of the reentry process[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 414-422.
[3] ZHONG Qiang, ZHENG Fengchuan, YANG Yuchen, DENG Zhaoyu. Diagnostic function analysis of the logarithmic law in open channel turbulence[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(12): 999-1005.
[4] XUE Chunhui, DONG Yujie. Optimization of an intermediate heat exchanger for a natural circulation molten salt pebble-bed reactor[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(5): 445-449.
[5] HUANG Shouqing, SUO Shuangfu, LI Yongjian, YANG Jie, LIU Shouwen, WANG Yuming. Flows in brush seals based on a 2-D staggered tube bundle model[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(2): 160-166.
[6] LI Xiao, YANG Xiaoyong, ZHANG Youjie. HTR-10GT inventory control characteristics and mechanism[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(9): 1010-1016,1022.
[7] Xinrong CAO,Jie WANG,Rongpin WANG,Xianwen ZHANG,Jintian TANG. Influence of the boundary conditions on aorta blood flow simulations[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(6): 700-705.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd