Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2016, Vol. 56 Issue (7) : 743-750     DOI: 10.16511/j.cnki.qhdxxb.2016.24.025
CIVIL ENGINEERING |
Optimal traffic sensor layout model considering traffic big data
SUN Zhiyuan, LU Huapu
Institute of Transport Engineering, Department of Civil Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(1096 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  An optimal traffic sensor layout model was developed to improve the accuracy, reliability and economy of urban traffic information collection. The traffic sensor layout was optimized in light of big data traffic information with the system optimized with consideration of the system cost, multi-source data sharing, data demand, fault conditions, road infrastructure, and different types of sensors. The impact of these influential factors was taken into account in a multi-objective programming model that included system cost minimization, traffic flow intercept maximization, path coverage minimization, and an origin-destination(OD) coverage constraint. The model was solved by the tolerant lexicographic method based on a genetic algorithm. A case study shows that the model provides multi-objective optimization, reflects the influence of multi-source data sharing and fault conditions, satisfies the origin-destination coverage constraint, and provides the optimal traffic sensor layout.
Keywords traffic survey      optimal traffic sensor layout      multi-objective programming      traffic big data      genetic algorithm      tolerant lexicographic method     
ZTFLH:  U491.1+1  
Issue Date: 15 July 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Zhiyuan
LU Huapu
Cite this article:   
SUN Zhiyuan,LU Huapu. Optimal traffic sensor layout model considering traffic big data[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(7): 743-750.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2016.24.025     OR     http://jst.tsinghuajournals.com/EN/Y2016/V56/I7/743
  
  
  
  
  
  
[1] Kwon J, Coifman B, Bickel P. Day-to-day travel-time trends and travel-time prediction from loop-detector data[J]. Transportation Research Record, 2000(1717):120-129.
[2] Zwahlen H T, Russ A, Oner E, et al. Evaluation of microwave radar trailers for nonintrusive traffic measurements[J]. Transportation Research Record, 2005(1917):127-140.
[3] Nanthawichit C, Nakatsuji T, Suzuki H. Application of probe-vehicle data for real-time traffic-state estimation and short-term travel-time prediction on a freeway[J]. Transportation Research Record, 2003(1855):49-59.
[4] 于渊, 雷利军, 景泽涛, 等. 北斗卫星导航在国内智能交通等领域的应用分析[J]. 工程研究——跨学科视野中的工程, 2014, 6(1):86-91.YU Yuan, LEI Lijun, JING Zetao, et al. Brief probe into the status and trend of compass navigation's application in domestic intelligent transportation systems[J]. Journal of Engineering Studies, 2014, 6(1):86-91.(in Chinese)
[5] Ahas R, Aasa A, Silm S, et al. Daily rhythms of suburban commuters' movements in the Tallinn metropolitan area:Case study with mobile positioning data[J]. Transportation Research Part C, 2010, 18(1):45-54.
[6] Bartin B, Ozbay K. A clustering based methodology for determining the optimal roadway configuration of detectors for travel time estimation[C]//Proceedings of the 2007 IEEE Intelligent Vehicles Symposium. Istanbul, Turkey:Institute of Electrical and Electronics Engineers, 2007:285-289.
[7] 张墨逸, 曹洁, 牛建强, 等. 基于图论与矩阵论的交通检测器布设新方法[J]. 公路交通科技, 2012, 29(11):130-134.ZHANG Moyi, CAO Jie, NIU Jianqiang, et al. A new layout of traffic detectors based on graph theory and matrix theory[J]. Journal of Highway and Transportation Research and Development, 2012, 29(11):130-134.(in Chinese)
[8] LIU Yang, ZHU Ning. A multi-objective detector location optimization approach[C]//Proceedings of the 14th COTA International Conference of Transportation Professionals. Changsha:American Society of Civil Engineers, 2014:1788-1800.
[9] HAO Guang, XIANG Hongyan, ZHANG Guolin. Traffic detector optimal location model and algorithm for dynamic OD estimation[C]//Proceedings of the 2nd International Conference on Transportation Engineering. Chengdu:American Society of Civil Engineers, 2009:2431-2436.
[10] 邵敏华, 孙立军, 邵显智. 基于转弯比例的网络检测器布设模型及算法[J]. 吉林大学学报:工学版, 2013, 43(6):1476-1481.SHAO Minhua, SUN Lijun, SHAO Xianzhi. Network location model of sensors and algorithm based on tuning ratios[J]. Journal of Jilin University:Engineering and Technology Edition, 2013, 43(6):1476-1481.(in Chinese)
[11] Bertini R L, Lovell D J. Impacts of sensor spacing on accurate freeway travel time estimation for traveler information[J]. Journal of Intelligent Transportation Systems, 2009, 13(2):97-110.
[12] Barceló J, Gilliéron F, Linares M P, et al. Exploring link covering and node covering formulations of detection layout problem[J]. Transportation Research Record, 2012(2308):17-26.
[13] ZHANG Jisheng, JIN Maojing. Optimal sensor density for freeway travel time estimation with multi-class traffic flow[C]//Proceedings of Second International Conference on Transportation Information and Safety. Wuhan:American Society of Civil Engineers, 2013:904-913.
[14] LI Haijian, DONG Honghui, JIA Limin, et al. A new measure for evaluating spatially related properties of traffic information credibility[J]. Journal of Central South University, 2014, 21(6):2511-2519.
[15] 陆化普, 孙智源, 屈闻聪. 大数据及其在智能交通系统中的应用综述[J]. 交通运输系统工程与信息, 2015, 15(5):45-52.LU Huapu, SUN Zhiyuan, QU Wencong. Big data and its application in urban intelligent transportation system[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(5):45-52. (in Chinese)
[16] YANG Hai, ZHOU Jing. Optimal traffic counting locations for origin-destination matrix estimation[J]. Transportation Research Part B, 1998, 32(2):109-126.
[17] YANG Hai, YANG Chao, GAN Liping. Models and algorithms for the screen line-based traffic counting location problems[J] Computers and Operations Research, 2006, 33(3):836-858.
[18] 朱宁. 交通网络检测器布设优化问题研究[D]. 天津:天津大学, 2012.ZHU Ning. Detector Location Optimization on Transportation Network[D]. Tianjin:Tianjin University, 2012.(in Chinese)
[19] 谭昌柏, 袁军, 周来水. 基于宽容分层序列法的飞机装配公差稳健设计技术[J]. 中国机械工程, 2012, 23(24):2962-2967.TAN Changbai, YUAN Jun, ZHOU Laishui. Robust tolerancing for aircraft assembly based on tolerant lexicographic method[J]. China Mechanical Engineering, 2012, 23(24):2962-2967.(in Chinese)
[20] 邢文训, 谢金星. 现代优化计算方法[M]. 第2版. 北京:清华大学出版社, 2006.XING Wenxun, XIE Jinxing. Modern Optimization Algorithms[M]. 2 ED. Beijing:Tsinghua University Press, 2006.(in Chinese)
[21] Nguyen S, Dupuis C. An efficient method for computing traffic equilibria in networks with asymmetric transportation costs[J]. Transportation Science, 1984, 18(2):185-202.
[22] 陆化普. 交通规划理论与方法[M]. 第2版. 北京:清华大学出版社, 2006.LU Huapu. Theory and Method in Transportation Planning[M]. 2 ED. Beijing:Tsinghua University Press, 2006.(in Chinese)
[1] HUANG Ailing, WANG Zijian, ZHANG Zhe, LI Mingjie, SONG Yue. Capacity-matching model of landside multiple transport modes for large airports considering the impact of carbon emissions[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(11): 1729-1740.
[2] DAI Xin, CHEN Jushi, CHEN Tao, HUANG Hong, LI Zhipeng, YU Shuiping. Multi-objective optimization method and case analysis for emergency drainage of pumped storage power station[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(10): 1558-1565.
[3] YU Jingchi, JIN Aiyun, PAN Jianwen, WANG Jinting, ZHANG Chuhan. GA-BP artificial neural networks for predicting the seismic response of arch dams[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(8): 1321-1329.
[4] ZHOU Wei, LI Min, QIU Mingjun, ZHANG Xilong, LIU Jiang, ZHANG Hongbo. Vehicle body panel thickness optimization by a genetic algorithm[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 523-532.
[5] ZHANG Jing, CHEN Tao, HUANG Lida, SU Guofeng, SUN Zhanhui, CHEN Jianguo. Community evacuation scheme based on multi-objective programming and agent simulations[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(6): 536-542.
[6] WANG Jundong, ZHAO Yuezhe. Stepped sound diffuser arrangement and diffusion analysis[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(3): 261-268.
[7] LIU Hezi, CHEN Tao. Speed distribution model of mixed non-motorized vehicles based on video recognition[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(2): 144-151.
[8] WANG Liping, KONG Xiangyu, YU Guang. Motor servo control parameter tuning for parallel and hybrid machine tools based on a genetic algorithm[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(10): 1106-1114.
[9] KARI·Tusongjiang, GAO Wensheng, ZHANG Ziwei, MO Wenxiong, WANG Hongbing, CUI Yiping. Power transformer fault diagnosis based on a support vector machine and a genetic algorithm[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(7): 623-629.
[10] FENG Ke, WANG Shouqing, XUE Yanguang. Optimization of PPP project equity structures based on the satisfactions of the main stakeholders[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(4): 376-381.
[11] LIU Zhe, JIN Dafeng, FAN Zhirui. Laminate optimization of a composite stiffened panel based on surrogate model[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(7): 782-789.
[12] HU Qingdong, ZENG Zhi, MA Hao, CHENG Jianping, LI Junli, ZHANG Hui, WANG Xin, WU Zhen. Measurement of indoor natural neutron spectrum with a Bonner sphere spectrometer[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(12): 1332-1334,1341.
[13] Rongtao DING. Organization method for port logistics chain's cloud service based on cooperative game theory[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(3): 366-372.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd