AUTO MATION |
|
|
|
|
|
Vector distance direction information for spatio-temporal Kriging |
CHEN Dingxin1,2, LU Wenkai1, LIU Daizhi2 |
1. State Key Laboratory of Intelligent Technology and Systems, Department of Automation, Tsinghua University, Beijing 100084, China;
2. Staff Room 907, PLA Rocket Force University of Engineering, Xi'an 710025, China |
|
|
Abstract The spatio-temporal Kriging method can be significantly improved by extending the variogram definition to the space-time domain. The key step in constructing the spatio-temporal variogram is to calculate the vector distances between the time slices and the space slices. This study analyzes the influence of the vector distance on the spatio-temporal variogram construction and presents a vector distance model that includes both the magnitude and the direction information. The algorithm was evaluated using magnetic field data with the evaluations based on the L1 norm and the L2 norm. The results show that the model with the additional direction information in the vector distance, more effectively represented the data characteristics which improved the spatio-temporal Kriging interpolation accuracy.
|
Keywords
geomagnetic field
spatio-temporal Kriging
variogram
vector direction
|
|
Issue Date: 15 May 2016
|
|
|
[1] Iaco S D, Myers D E, Posa D. The linear coregionalization model and the product-sum space-time variogram[J].Mathematical Geology, 2003,35(35):25-38.
[2] Carla N, Amilcar S. Geostatistical space-time simulation model for air quality prediction[J].Environmetrics, 2005,16(4):393-404.
[3] Li S, Shu H, Xu Z. Spatial-temporal statistics and analysis of rainfall in Jilin Province[C]//International Workshop on Computer Science for Environmental Engineering and Ecoinformatics, 2011, Kunming, China. Berlin:Springer-Verlag, 2011:255-261.
[4] Tang Y. Comparison of semivariogram models for Kriging monthly rainfall in eastern China[J].Journal of Zhejiang University Science,2002,3(5):584-590.
[5] Tilmann G. Nonseparable, stationary covariance functions for space-time data[J].Journal of the American Statistical Association, 2002,97(458):590-600.
[6] Cichota R, Hurtado A L B, Lier Q D J V. Spatio-temporal variability of soil water tension in a tropical soil in Brazil[J].Geoderma,2006,133(s 3-4):231-243.
[7] Lark R M, Bellamy P H, Rawlins B G. Spatio-temporal variability of some metal concentrations in the soil of eastern England, and implications for soil monitoring[J].Geoderma,2006,133(s 3-4):363-379.
[8] Gething P W, Akinson P M, Noor A M. A local space-time Kriging approach applied to a national outpatient malaria data set[J].Computers & Geosciences, 2007,33(10-50):1337-1350.
[9] Noel C. Spatial prediction and ordinary Kriging[J].Mathematical Geology, 1988,20(4):405-421.
[10] De C L, Myers D, Posa D. Estimating and modeling space-time correlation structures[J].Stat Probab Lett, 2001,51(1):9-14.
[11] Iaco S D, Myers D E, Posa D. Nonseparable space-time covariance models:Some parametric families[J].Mathematical Geology,2002,34(1):23-42.
[12] Siders I V, Gabella, Erdin R, et al. Real-time radar-rain-gauge merging using spatiio-temporal co-Kriging with external drift in the alpine terrain of Switzerland[J].Journal of the Royal Meteorological Society, 2014,140(680):1097-1111.
[13] Kalivas J H. Overview of two-norm (L2) and one-norm (L1) Tikhonov regularization variants for full wavelength or sparse spectral multivariate calibration models or maintenance[J].Journal of Chemometrics, 2012,26(6):218-230.
[14] Jin L H, Li D H, Song Y M. Combining vector ordering and spatial information for color image interpolation[J].Image and Vision Computing, 2009,27(4):410-416.
[15] Astola J, Haavisto J, Neuvo Y. Vector median filters[J].Proceedings of the IEEE, 1990,78(4):678-689.
[16] Trahanias P E, Karakos D G, Venetsanopoulos A N. Directional processing of color images:Theory and experimental results[J].IEEE Transactions on Image Processing, 1996,5(6):868-880
[17] De C L, Myers D, Posa D. Estimating and modeling space-time correlation structures[J].Stat Probab Lett, 2001,51(1):9-14.
[18] Cesare L D, Myers D E, Posa D. Product-sum covariance for space-time modeling:An environmental application[J].Environmetrics, 2001,12(1):11-23.
[19] 李莎, 舒红, 董林. 基于时空变异函数的Kriging插值及实现[J]. 计算机工程与应用, 2011,47(23):25-38. LI Sha, SHU Hong, DONG Lin. Research and realization of Kriging interpolation based on spatial-temporal variogram[J]. Computer Engineering and Applications, 2011,47(23):25-26. (in Chinese) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|