Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2016, Vol. 56 Issue (12) : 1255-1263     DOI: 10.16511/j.cnki.qhdxxb.2016.25.035
HYDRAULIC ENGINEERING |
Mathematical model for dowel bearing capacity considering the effect of concrete damage
LI Pengfei1, AN Xuehui1, HE Shiqin2, CHEN Chen2
1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China;
2. College of Civil Engineering, North China University of Technology, Beijing 100144, China
Download: PDF(1815 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The measured bearing capacities of dowels embedded in concrete were compared with existing formula for various conditions. A total of 11 specimens were tested to failure to investigate the effect of the bar diameter, concrete strength and concrete cover on the dowel bearing capacity. The effect of localized crushing of the concrete found from the experiment and numerical results was used to improve the formula accuracy. Specimens with different concrete covers were simulated to study the key parameters affecters the failure mechanisms. Comparisons of the analytical results with experimental data showed that the model gives good predictions for both failure mechanisms.
Keywords dowel action      damage effect      mathematical model      concrete cover      finite element method     
ZTFLH:  TU312  
  TV32  
Issue Date: 15 December 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Pengfei
AN Xuehui
HE Shiqin
CHEN Chen
Cite this article:   
LI Pengfei,AN Xuehui,HE Shiqin, et al. Mathematical model for dowel bearing capacity considering the effect of concrete damage[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(12): 1255-1263.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2016.25.035     OR     http://jst.tsinghuajournals.com/EN/Y2016/V56/I12/1255
  
  
  
  
  
  
  
  
  
  
  
  
[1] 过镇海, 时旭东. 钢筋混凝土原理和分析[M]. 北京:清华大学出版社, 2003.GUO Zhenhai, SHI Xudong. Reinforced Concrete Theory and Analyse[M]. Beijing:Tsinghua University Press, 2003. (in Chinese)
[2] Nakaki S D, Stanton J F, Sritharan S. An overview of the PRESSS five-story precast test building[J]. PCI Journal, 1999, 44(2):26-39.
[3] Kulkarni S A, Li B, Yip W K. Finite element analysis of precast hybrid-steel concrete connections under cyclic loading[J]. Journal of Constructional Steel Research, 2008, 64(2):190-201.
[4] 王锡财, 陈述恒, 李康龙. 丽江7.0级地震丽江县城房屋震害分析[J]. 地震研究, 1997, 20(4):417-423.WANG Xicai, CHEN Shuheng, LI Kanglong. House damage analyses in Lijiang town suffered from Lijiang M=7.0 earthquake[J]. Journal of Seismological Research, 1997, 20(4):417-423. (in Chinese).
[5] Moradi A R, Soltani M, Tasnimi A. A simplified constitutive model for dowel action across RC cracks[J]. Journal of Advanced Concrete Technology, 2012, 10(8):264-277.
[6] Maekawa K, Qureshi J. Behavior of embedded bars in concrete under combined axial pullout and transverse displacement[J]. Concrete Library International, 1996, 15(532):183-196.
[7] Vintzeleou E N, Tassios T P. Mathematical models for dowel action under monotonic and cyclic conditions[J]. Magazine of Concrete Research, 1986, 38(134):13-22.
[8] Vintzeleou E N, Tassios T P. Behavior of dowels under cyclic deformations[J]. ACI Structural Journal, 1987, 84(1):18-30.
[9] Rasmussen B H. The carrying capacity of transversely loaded bolts and dowels embedded in concrete[J]. Bygningsstatiske Meddelser, 1963, 34(2):39-55.
[10] Krefeld W J, Thurston C W. Contribution of longitudinal steel to shear resistance of reinforced concrete beams[J]. ACI Journal Proceedings, 1966, 63(3):325-344.
[11] Houde J, Mirza M S. A finite element analysis of shear strength of reinforced concrete beams[J]. ACI Special Publication, 1974, 42(1):103-128.
[12] Bauman T, Rusch H. Versuche zum studium der verd ubelungswirkung der biegezugbewehrung eines stahlbetonbalken[J]. Deutscher Ausschuss Fur Stahlbeton, Bulletin, 1970, 210(1):125-139.
[13] Shima H, Chou L L, Okamura H. Micro and macro models for bond in reinforced concrete[J]. Journal of the Faculty of Engineering, 1987, 39(2):133-194.
[14] Soroushian P, Obaseki K, Rojas M C. Bearing strength and stiffness of concrete under reinforcing bars[J]. ACI Materials Journal, 1987, 84(3):179-184.
[15] Shang F, An X, Kawai S, et al. Open-slip coupled model for simulating three-dimensional bond behavior of reinforcing bars in concrete[J]. Computers and Concrete, 2010, 7(5):403-419.
[16] Shang F, An X, Mishima T, et al. Three-dimensional nonlinear bond model incorporating transverse action in corroded RC members[J]. Journal of Advanced Concrete Technology, 2011, 9(1):89-102.
[17] Dei Poli S, Di Prisco M, Gambarova P G. Shear response, deformations, and subgrade stiffness of a dowel bar embedded in concrete[J]. ACI Structural Journal, 1992, 89(6):665-675.
[18] Dei Poli S, Di Prisco M, Gambarova P G. Cover and stirrup effects on the shear response of dowel bar embedded in concrete[J]. ACI Structural Journal, 1993, 90(4):441-450.
[19] Millard S G, Johnson R P. Shear transfer across cracks in reinforced concrete due to aggregate interlock and to dowel action[J]. Magazine of Concrete Research, 1984, 36(126):9-21.
[20] Soroushian P, Obaseki K, Rojas M C, et al. Analysis of dowel bars acting against concrete core[J]. Journal of the American Concrete Institute, 1986, 83(4):642-649.
[21] Paulay T, Park R, Phillips M H. Horizontal construction joints in cast-in-place reinforced concrete[J]. ACI Special Publication, 1974, 42(2):599-616."
[1] BAO Jinqing, YANG Chenxu, XU Jianguo, LIU Hongxia, WANG Gaocheng, ZHANG Guangming, CHENG Wei, ZHOU Desheng. A fully coupled and full 3D finite element model for hydraulic fracturing and its verification with physical experiments[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(8): 833-841.
[2] XU Wei, ZHAO Zhengming, JIANG Qirong. Calculation method for parasitic capacitance of high-frequency transformers[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(10): 1088-1096.
[3] WANG Hengwei, LIN Jiarui, ZHANG Jianping. Resource-constrained project scheduling problem considering productivity and construction methods[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(3): 271-277.
[4] NIE Junfeng, TANG Zhenrui, ZHANG Haiquan, LI Hongke, WANG Xin. Crystal plasticity constitutive model for BCC based on the dislocation density[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(7): 780-784.
[5] TIAN Cheng, ZHOU Chi, DING Weiqi, GUI Liangjin, FAN Zijie. Influence of the thermal expansion of a shaft on the misalignment of bevel gears[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(6): 565-571.
[6] ZHANG Hong, ZHANG Yang, LI Vera, XU Zhao. Simulated comparisons of resale housing sales brokerage patterns[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(4): 399-405.
[7] WU Jian'an, WU Zuhe, WANG Heng, LI Liya, TANG Jintian. Optimization of a coil design for magnetic hyperthermia treatment based on the finite element method[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(4): 406-410,416.
[8] GUAN Liwen, YANG Liangliang, WANG Liping, CHEN Xueshang, WANG Yaohui, HUANG Ke. Modeling and analysis of intermittent cutting temperature field for the “S” test specimens[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(2): 192-199.
[9] LI Yanjun, WU Aiping, LIU Debo, ZHAO Haiyan, ZHAO Yue, WANG Guoqing. Numerical simulations of welding residual stresses in VPTIG-welded joints of the 2219 aluminum alloy[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(10): 1037-1041,1046.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd