Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2016, Vol. 56 Issue (11) : 1242-1248     DOI: 10.16511/j.cnki.qhdxxb.2016.26.019
COMPUTER SCIENCE AND TECHNOLOGY |
SPH simulations of aeroacoustic problems in vocal tracts
WEI Jianguo1, HAN Jiang2, HOU Qingzhi2, WANG Song2, DANG Jianwu2,3
1. School of Computer Software, Tianjin University, Tianjin 300350, China;
2. School of Computer Science and Technology, Tianjin University, Tianjin 300350, China;
3. School of Information Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
Download: PDF(1455 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Simulation of human sound wave propagation need to take into account the moving boundaries and fluid flow within the vocal tract for accurate realistic models. Traditional mesh-based methods that are widely used to study human sound production have many problems due to mesh reconstruction and distortion, so they are not as effective as meshless methods. The aeroacoustic wave equations in the Eulerian framework are transformed to the governing equations for wave propagation in the Lagrangian form and discretized using the smoothed particle hydrodynamics (SPH) method. The accuracy and reliability of SPH for wave propagation in a static media are shown by comparisons with finite difference time domain (FDTD) results. This method is validated against the Doppler effect based theoretical solutions for one-and two-dimensional aeroacoustics to verify the ability of SPH to solve complex aeroacoustic problems.
Keywords aeroacoustics      vocal tract      meshless      smoothed particle hydrodynamics      Lagrangian method     
ZTFLH:  TP391  
  O422  
  V211.3  
Issue Date: 15 November 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WEI Jianguo
HAN Jiang
HOU Qingzhi
WANG Song
DANG Jianwu
Cite this article:   
WEI Jianguo,HAN Jiang,HOU Qingzhi, et al. SPH simulations of aeroacoustic problems in vocal tracts[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(11): 1242-1248.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2016.26.019     OR     http://jst.tsinghuajournals.com/EN/Y2016/V56/I11/1242
  
  
  
  
  
  
  
  
[1] Stevens K N. Acoustic Phonetics[M]. Cambridge:The MIT Press, 2000.
[2] CHEN Xi, DANG Jianwu, YAN Han, et al. A neural understanding of speech motor learning[C]//Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA 2013). Kaohsiung, Taiwan, China:IEEE Press, 2013:321-325.
[3] Lighthill M J. On sound generated aerodynamically:II. Turbulence as a source of sound[J]. Proc R Soc Lond A, 1954, 222:1-32.
url: http://dx.doi.org/10.1098/rspa.1954.0049
[4] Tam C K W. Computational aeroacoustics:Issues and methods[J]. AIAA J, 1995, 33(10):1788-1796.
[5] Tam C K W, Webb J C. Dispersion-relation-preserving finite difference scheme for computational acoustics[J]. J Comput Phys, 1993, 107(2):262-281.
[6] Lele S K. Compact finite difference scheme with spectral-like resolution[J]. J Comput Phys, 1992, 103(1):16-42.
[7] Kim J W, Lee D J. Optimized compact finite difference schemes with maximum resolution[J]. AIAA J, 1996, 34(5):887-893.
[8] Zhong X L. High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition[J]. J Comput Phys, 1998, 144(2):662-709.
[9] Zhuang M, Chen R F. Optimized upwind dispersion relation preserving finite difference scheme for computational aeroacoustics[J]. AIAA J, 1998, 36(11):2146-2148.
[10] Gaitonde D, Shang J S. Optimized compact difference based finite-volume schemes for linear wave phenomena[J]. J Comput Phys, 1997, 138(2):617-643.
[11] Lee C, Seo Y. A new compact spectral scheme for turbulence simulation[J]. J Comput Phys, 2002, 183(2):438-469.
[12] Hu F Q, Hussaini M Y, Manthey J L. Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics[J]. J Comput Phys, 1996, 124(1):177-191.
[13] Cockburn B, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II:general framework[J]. Math Comput, 1989, 52:411-435.
[14] Liu G R, Liu M B. Smoothed Particle Hydrodynamics Methed:A Meshfree Pariticle Method[M]. Singapore:World Scientific Press, 2003.
[15] 张德良. 计算流体力学教程[M]. 北京:高等教育出版社, 2010. ZHANG Deliang. A Course in Computational Fluid Dynamics[M]. Beijing:Higher Education Press, 2010. (in Chinese)
[16] Lucy L B. A numerical approach to the testing of the fission hypothesis[J]. Astron J, 1977, 8(12):1013-1024.
[17] Gingold R A, Monaghan J J. Smoothed particle hydrodynamics:Theory and applications to non-spherical stars[J]. MNRAS, 1977, 18:375-389.
[18] Monaghan J J. Smoothed particle hydrodynamics and its diverse applications[J]. Ann Rev Fluid Mech, 2012, 44(44):323-346.
[19] Lastiwka M, Basa M, Quinlan N J. Permeable and non-reflecting boundary conditions in SPH[J]. Int J Numer Methods Fluids, 2009, 61:709-724.
url: http://dx.doi.org/10.1002/fld.1971
[20] HOU Qingzhi, Kruisbrink A C H, Pearce F, et al. Smoothed particle hydrodynamics simulations of flow separation at bends[J]. Comput Fluids, 2014, 90(4):138-146.
[21] Sullivan D M. Electromagnetic Simulation Using the FDTD Method[M]. New York:John Wiley & Sons, 2013.
[1] YAO Yun, WU Xiyu, KONG Jiangping. Radius vector-driven 3-D Mandarin vocal tract model[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(9): 945-951.
[2] CAO Honglin, KONG Jiangping. Correlations between vocal tract parameters and body heights in adult humans[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(11): 1184-1189,1195.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd