Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2017, Vol. 57 Issue (1) : 72-78     DOI: 10.16511/j.cnki.qhdxxb.2017.21.014
ELECTRONIC ENGINEERING |
Image salient region detection based on boundary expansion
LIU Jie1,2,3, WANG Shengjin1,2,3
1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
2. State Key Laboratory of Intelligent Technology and Systems, Beijing 100084, China;
3. Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China
Download: PDF(1890 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Background priors have been shown to improve salient region detection. Typically, image boundary patches are assumed to be the background and the saliency of other patches is defined by their difference from the boundaries. A greater difference indicates a more salient patch. However, when the background is cluttered, or the foreground overlaps the image boundary, using only boundary patches to indicate the background may lead to a saliency map with strong noise and compromise the detection accuracy. To address this problem, the boundary patches are first expanded here into the image interior to contain as much background as possible. Then, the rest of the patches are used as foreground queries with the saliency of each patch measured by a two-stage ranking algorithm. Tests on three large public datasets demonstrate the superiority of this method over five other algorithms.
Keywords salient region detection      boundary expansion      manifold ranking      dissimilarity measure     
ZTFLH:  TP399  
Issue Date: 15 January 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Jie
WANG Shengjin
Cite this article:   
LIU Jie,WANG Shengjin. Image salient region detection based on boundary expansion[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(1): 72-78.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2017.21.014     OR     http://jst.tsinghuajournals.com/EN/Y2017/V57/I1/72
  
  
  
  
  
  
  
  
  
[1] CHENG Mingming, Mitra N J, HUANG Xiaolei, et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3):569-582.
[2] LIU Jie, WANG Shengjin. Salient region detection via simple local and global contrast representation[J]. Neurocomputing, 2015, 147(1):435-443.
[3] Papageorgiou C, Poggio T. A trainable system for object detection[J]. International Journal of Computer Vision, 2000, 38(1):15-33.
[4] ZHENG Liang, WANG Shengjin, LIU Z, et al. Fast image retrieval:Query pruning and early termination[J]. IEEE Transactions on Multimedia, 2015, 17(5):648-659.
[5] Mishra A K, Aloimonos Y, Cheong L F, et al. Active visual segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4):639-653.
[6] JIANG Huaizu, WANG Jingdong, YUAN Zejian, et al. Salient object detection:A discriminative regional feature integration approach[C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA:IEEE, 2013:2083-2090.
[7] WEI Yichen, WEN Fang, ZHU Wangjiang, et al. Geodesic saliency using background priors[C]//Proc of European Conference on Computer Vision. Firenze, Italy, 2012:29-42.
[8] ZHU Wangjiang, LIANG Shuang, WEI Yichen, et al. Saliency optimization from robust background detection[C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA:IEEE, 2014:2814-2821.
[9] LI Xiaohui, LU Huchuan, ZHANG Lihe, et al. Saliency detection via dense and sparse reconstruction[C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA:IEEE, 2013:2976-2983.
[10] YANG Chuan, ZHANG Lihe, LU Huchuan, et al. Saliency detection via graph-based manifold ranking[C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA:IEEE, 2013:3166-3173.
[11] QIN Yao, LU Huchuan, XU Yiqun, et al. Saliency detection via Cellular Automata[C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA:IEEE, 2015:110-119.
[12] LI Changyang, YUAN Yuchen, CAI Weidong, et al. Robust saliency detection via regularized random walks ranking[C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA:IEEE, 2015:2710-2717.
[13] Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2274-2282.
[14] SHI Jianping, YAN Qiong, XU Li, et al. Hierarchical image saliency detection on extended CSSD[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(4):717-729.
[15] LIU Tie, YUAN Zejian, SUN Jian, et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2):353-367.
[16] ZHOU Dengyong, Weston J, Gretton A, et al. Ranking on data manifolds[J]. Advances in Neural Information Processing Systems, 2004, 16(1):169-176.
[17] ZHOU Dengyong, Bousquet O, Lal T N, et al. Learning with local and global consistency[J]. Advances in Neural Information Processing Systems, 2004, 16(16):321-328.
[18] Otsu N, A threshold selection method from gray-level histograms[J]. IEEE Transactions Systems, Man, and Cybernetics, 1979, 9(1):62-66.
[19] Achanta R, Hemami S, Estrada F, et al. Frequency-tuned salient region detection[C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA:IEEE, 2009:1597-1604.
[20] Perazzi F, Krähenbühl P, Pritch Y, et al. Saliency filters:Contrast based filtering for salient region detection[C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA:IEEE, 2012:733-740.
[1] LIU Jie, WANG Shengjin. Image salient region detection by fusing clustering and ranking[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(9): 913-919.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd