Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2017, Vol. 57 Issue (5) : 471-475,482     DOI: 10.16511/j.cnki.qhdxxb.2017.22.023
MECHANICAL ENGINEERING |
Power loss and temperature rise model for an IGBT in a variable polarity welding power supply with a reverse voltage stabilizer
YANG Zhongyu, ZHU Zhiming, LIU Bo, TANG Yingying
Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(2316 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  During commutation in a variable polarity welding power supply with a reverse voltage stabilizer, the instantaneous pulse power loss loaded on the insulated gate bipolar translator (IGBT) could cause a jump in the junction temperature that might exceed the maximum allowable junction temperature, threatening safe operation of the IGBT. Formulas were derived to calculate the highest junction temperature using a partial fraction circuit model in the thermal-electric equivalent method. The results were compared with simulation results to verify the formulas. The effects of the main parameters on the junction temperature were analyzed to develop constraint conditions for controlling the IGBT junction temperature in a safe range. These results provide a theoretical basis for choosing reasonable IGBT and its working parameters for the power supply circuits and control strategy.
Keywords insulated gate bipolar translator (IGBT)      junction temperature      thermal-electric equivalent model      variable polarity welding power supply     
ZTFLH:  TN492  
Issue Date: 15 May 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Zhongyu
ZHU Zhiming
LIU Bo
TANG Yingying
Cite this article:   
YANG Zhongyu,ZHU Zhiming,LIU Bo, et al. Power loss and temperature rise model for an IGBT in a variable polarity welding power supply with a reverse voltage stabilizer[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(5): 471-475,482.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2017.22.023     OR     http://jst.tsinghuajournals.com/EN/Y2017/V57/I5/471
  
  
  
  
  
  
  
  
  
  
  
[1] 邹高域, 赵争鸣, 袁立强, 等. 双PWM变频器中的IGBT模块损耗 [J]. 清华大学学报 (自然科学版), 2013, 53(7): 1011-1018.ZOU Gaoyu, ZHAO Zhengming, YUAN Liqiang, et al. Losses in IGBT modules in dual-PWM converters [J]. J Tsinghua Univ (Sci and Tech), 2013, 53(7): 1011-1018. (in Chinese)
[2] 熊妍, 沈燕群, 江剑, 等. IGBT损耗计算和损耗模型研究[J]. 电源技术应用, 2006, 9(5): 55-60.XIONG Yan, SHEN Yanqun, JIANG Jian, et al. Study on loss calculation and model for IGBT [J]. Power Supply Technologies and Applications, 2006, 9(5): 55-60. (in Chinese)
[3] 许德伟, 朱东起, 黄立培, 等. 电力半导体器件和装置的功率损耗研究 [J]. 清华大学学报 (自然科学版), 2000, 40(3): 5-8.XU Dewei, ZHU Dongqi, HUANG Lipei, et al. Power loss analysis of power semiconductor devices and power converters [J]. J Tsinghua Univ (Sci and Tech), 2000, 40(3): 5-8. (in Chinese)
[4] LI Zhiming, DU Dong, WANG Li, et al. Study on the Control Strategy of Commutation Process in Variable Polarity Plasma Arc Welding [M]. Berlin: Springer, 2007: 163-170.
[5] 夏铸亮. 软开关变极性埋弧焊电源数字化控制及换流策略研究 [D]. 北京: 清华大学, 2012. XIA Zhuliang. Research on the Digital Control and Commutation Strategy of Soft-Switched Variable-Polarity SAW Power Supply [D]. Beijing: Tsinghua University, 2012. (in Chinese)
[6] 刘骥, 黄磊. 基于ANSYS软件的IGBT模块散热分析 [J]. 电力电子技术, 2013, 47(1): 107-108. LIU Ji, HUANG Lei. Thermal analysis of IGBT module based on the software of ANSYS [J]. Power Electronics, 2013, 47(1): 107-108. (in Chinese)
[7] 张健, 吕长志, 张小玲, 等. 基于ANSYS的IGBT热模拟与分析 [J]. 微电子学, 2011, 41(1): 139-142. ZHANG Jian, LÜ Changzhi, ZHANG Xiaoling, et al. Thermal simulation and analysis of IGBT based on ANSYS [J]. Microelectronics, 2011, 41(1): 139-142. (in Chinese)
[8] 宋飞, 梁哲兴, 张伟. IGBT器件稳态及瞬态热模型仿真分析[J]. 船电技术, 2013, 33(3): 10-13. SONG Fei, LIANG Zhexing, ZHANG Wei. Steady and transient thermal model simulation analysis of IGBT module [J]. Marine Electric & Electronic Engineering, 2013, 33(3): 10-13. (in Chinese)
url: http://dx.doi.org/e Electric
[9] Musallam M, Johnson C M. Real-time compact thermal models for health management of power electronics [J]. IEEE Transactions on Power Electronics, 2010, 25(6): 1416-1425.
[10] Bryant A T, Mawby P A, Palmer P R, et al. Exploration of power device reliability using compact device models and fast electro-thermal simulation [C]//41st Industry Applications Conference. Tampa, FL, USA, 2006: 1465-1472.
[11] 秦星. 风电变流器IGBT模块结温计算及功率循环能力评估[D]. 重庆: 重庆大学, 2014. QIN Xing. Calculation of Junction Temperature and Assessment of Power Cycling Capabilities of IGBT Modules for Wind Power Converter [D]. Chongqing: Chongqing University, 2014. (in Chinese)
[12] Martin K, Welhelm R. FF300R12KT4 IGBT Datasheet 2.1 [Z/OL]. Munich: Infineon, 2008-01-25 [2016-05-09]. http://pdf1.alldatasheet.com/datasheet-pdf/view/416962/INFINEON/FF300R12KT4.html.
url: http://pdf1.alldatasheet.com/datasheet-pdf/view/416962/infineon/ff300r12kt4.html.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd