Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2017, Vol. 57 Issue (5) : 491-496     DOI: 10.16511/j.cnki.qhdxxb.2017.22.026
AUTOMOTIVE ENGINEERING |
Cyclist detection based on detection proposals and deep convolutional neural networks
LI Xiaofei1, XU Qing1, XIONG Hui1,2, WANG Jianqiang1, LI Keqiang1
1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China;
2. School of Software, Beihang University, Beijing 100191, China
Download: PDF(2881 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Cyclist protection systems based on cyclist detection methods are needed to protect cyclists from road traffic. This paper presents a detection proposal method and a cyclist detection method using deep convolutional neural networks to classify and locate cyclists. The detection proposal method uses cyclist shared salient region detection, redundancy-based detection and geometric constraint-based detection. Tests using a public cyclist dataset show that this method significantly outperforms state-of-the-art detection proposals, which verifies the effectiveness of this method.
Keywords object detection      cyclist detection      detection proposal      convolutional neural network     
ZTFLH:  TP391.4  
Issue Date: 15 May 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Xiaofei
XU Qing
XIONG Hui
WANG Jianqiang
LI Keqiang
Cite this article:   
LI Xiaofei,XU Qing,XIONG Hui, et al. Cyclist detection based on detection proposals and deep convolutional neural networks[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(5): 491-496.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2017.22.026     OR     http://jst.tsinghuajournals.com/EN/Y2017/V57/I5/491
  
  
  
  
  
  
  
[1] Toroyan T. WHO Global Status Report on Road Safety 2015 [R]. Geneva: World Health Organization, 2015.
[2] Geronimo D, Lopez A M, Sappa A D, et al. Survey of pedestrian detection for advanced driver assistance systems [J]. IEEE Trans on PAMI, 2010, 32(7): 1239-1258.
[3] LI Tong, CAO Xianbin, XU Yanwu. An effective crossing cyclist detection on a moving vehicle [C]//Proc 8th Intelligent Control and Automation. Jinan, 2010: 368-372.
[4] 岳昊, 邵春福, 赵熠. 基于 BP 神经网络的行人和自行车交通识别方法[J]. 北京交通大学学报, 2008, 32(3): 46-49.YUE Hao, SHAO Chunfu, ZHAO Yi. A study on pedestrian and cyclist recognition based on BP neural network [J]. Journal of Beijing Jiaotong University, 2008, 32(3): 46-49. (in Chinese)
[5] Cho H, Rybski P E, ZHANG Wende. Vision-based bicyclist detection and tracking for intelligent vehicles [C]//Proc IEEE IV. San Diego, 2010: 454-461.
[6] YANG Kai, LIU Chao, ZHENG Jiangyu, et al. Bicyclist detection in large scale naturalistic driving video [C]//Proc IEEE ITSC. Tsingtao, 2014: 1638-1643.
[7] TIAN Wei, Lauer M. Fast cyclist detection by cascaded detector and geometric constraint [C]//Proc IEEE ITSC. Canary Islands, 2015: 1286-1291.
[8] LI Xiaofei, Flohr F, YANG Yue, et al. A new benchmark for vision-based cyclist detection [C]//Proc IEEE IV. Gothenburg, 2016: 1028-1033.
[9] Nam W, Dollár P, Han J H. Local decorrelation for improved pedestrian detection [C]//Proc NIPS. Montreal, 2014: 424-432.
[10] Duda R O, Hart P E, Stork D G. Pattern Classification [M]. New York: John Wiley & Sons, 2012.
[11] Girshick R, Donahue J, Darrell T, et al. Region-based convolutional networks for accurate object detection and segmentation [J]. IEEE Trans on PAMI, 2016, 38(1): 142-158.
[12] Girshick R. Fast R-CNN [C]//Proc IEEE ICCV. Santiago, 2015: 1440-1448.
[13] Uijlings J, Sande K, Gevers T, et al. Selective search for object recognition [J]. Int J Comput Vis, 2010, 104(2): 154-171.
[14] Dollár P, Zitnick C L. Fast edge detection using structured forests [J]. IEEE Trans on PAMI, 2015, 37(8): 1558-1570.
[1] YANG Bo, QIU Lei, WU Shu. A collaborative filtering model based on heterogeneous graph neural network[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1339-1349.
[2] HUANG Ben, KANG Fei, TANG Yu. A real-time detection method for concrete dam cracks based on an object detection algorithm[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1078-1086.
[3] CHEN Bo, ZHANG Hua, CHEN Yongcan, LI Yonglong, XIONG Jinsong. Semantic segmentation method of hydraulic structure crack based on feature enhancement[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1135-1143.
[4] DU Xiaochuang, LIANG Manchun, LI Ke, YU Yancheng, LIU Xin, WANG Xiangwei, WANG Rudong, ZHANG Guojie, FU Qi. A gamma radionuclide identification method based on convolutional neural networks[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(6): 980-986.
[5] DENG Qing, ZHANG Bo, LI Yihao, ZHOU Liang, ZHOU Zhengqing, JIANG Huiling, GAO Yang. Crowd counting model for evacuation scenarios based on a cascaded CNN[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(1): 146-152.
[6] MEI Jie, LI Qingbin, CHEN Wenfu, WU Kun, TAN Yaosheng, LIU Chunfeng, WANG Dongmin, HU Yu. Overtime warning of concrete pouring interval based on object detection model[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(7): 688-693.
[7] WANG Xiaomeng, GUAN Zhibin, XIN Wei, WANG Jiajie. Source code defect detection using deep convolutional neural networks[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(11): 1267-1272.
[8] HAN Kun, PAN Haiwei, ZHANG Wei, BIAN Xiaofei, CHEN Chunling, HE Shuning. Alzheimer's disease classification method based on multi-modal medical images[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(8): 664-671,682.
[9] LIN Peng, WEI Pengcheng, FAN Qixiang, CHEN Wenqi. CNN model for mining safety hazard data from a construction site[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(8): 628-634.
[10] LIANG Jie, CHEN Jiahao, ZHANG Xueqin, ZHOU Yue, LIN Jiajun. One-hot encoding and convolutional neural network based anomaly detection[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(7): 523-529.
[11] ZHANG Sicong, XIE Xiaoyao, XU Yang. Intrusion detection method based on a deep convolutional neural network[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(1): 44-52.
[12] LIU Qiong, LI Zongxian, SUN Fuchun, TIAN Yonghong, ZENG Wei. Image recognition and classification by deep belief-convolutional neural networks[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(9): 781-787.
[13] SONG Qingsong, ZHANG Chao, CHEN Yu, WANG Xingli, YANG Xiaojun. Road segmentation using full convolutional neural networks with conditional random fields[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(8): 725-731.
[14] LU Xiaofeng, ZHANG Shengfei, YI Shengwei. Free-text keystroke continuous authentication using CNN and RNN[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(12): 1072-1078.
[15] ZHANG Xu, WANG Shengjin. Attributed object detection based on natural language processing[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(11): 1137-1142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd