Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2017, Vol. 57 Issue (5) : 504-510     DOI: 10.16511/j.cnki.qhdxxb.2017.22.028
AUTOMOTIVE ENGINEERING |
Characterization of the fracture of an aluminum alloy anticollision-beam to impact loading
LAI Xinghua1, WANG Lei1, LI Jie2, JIANG Yazhou2, XIA Yong3
1. Suzhou Automobile Research Institute (Xiangcheng), Tsinghua University, Suzhou 215000, China;
2. Changan Automobile Company Limited, Chongqing 414100, China;
3. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
Download: PDF(3566 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Aluminum alloys are important light materials for vehicle weight reduction, but they frequently experience fracture under impact loading. This paper describes experimental and analytical methods for characterizing the fracture of aluminum alloy bumper beams. A test matrix is designed to obtain the material mechanical properties at different tensile strain rates and a variety of stress states, including tension, shear, notch tension, tension-shear and punch. The Swift-Hockett-Sherby law is used to describe the hardening of the material, with different stress states then simulated in the LS-DYNA finite element analysis environment to get a good correlation. Then, the stress triaxialities and lode angles extracted from the simulations are used to calibrate a modified Mohr-Coulomb (MMC) fracture model. Simulations of the material tests and a component bending test with the MMC model correlate well with the test results to support the validity of this method for fracture characterization, as well as the validity of the MMC fracture model for predicting metal fracture.
Keywords aluminum alloy      mechanical properties      modified Mohr-Coulomb (MMC)      fracture      bumper beam     
ZTFLH:  U465.2+2  
Issue Date: 15 May 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LAI Xinghua
WANG Lei
LI Jie
JIANG Yazhou
XIA Yong
Cite this article:   
LAI Xinghua,WANG Lei,LI Jie, et al. Characterization of the fracture of an aluminum alloy anticollision-beam to impact loading[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(5): 504-510.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2017.22.028     OR     http://jst.tsinghuajournals.com/EN/Y2017/V57/I5/504
  
  
  
  
  
  
  
  
  
  
  
  
[1] 姚付彬. CR590T/340Y DP镀锌钢板点焊接头组织和性能的研究[D]. 长春: 吉林大学, 2011.YAO Fubin. Study on Microstructures and Properties of Ressistance Spot-Welded Joints of Galvanized Steel Sheets with Trademark of CR590T/340Y DP [D]. Changchun: Jilin University, 2011. (in Chinese)
[2] 宫林松, 童胜坤, 唐良文, 等. A356.2 铝合金轮毂拉伸性能及断口分析[J]. 汽车工艺与材料, 2012(10): 42-46.GONG Linsong, TONG Shengkun, TANG Liangwen, et al. A356.2 aluminum alloy wheel hub tensile properties and fracture analysis [J]. Automobile Technology & Material, 2012(10): 42-46. (in Chinese)
[3] 吕丹, 朱亮, 朱浩, 等. 不同应力状态下6061铝合金力学性能及断裂行为的研究[J]. 轻合金加工技术, 2010, 38(4): 52-55.LÜ Dan, ZHU Liang, ZHU Hao, et al. Study of mechanics property and fracture behaviors on 6061 aluminum alloy under different stress states [J]. Light Alloy Fabrication Technology, 2010, 38(4): 52-55. (in Chinese)
[4] 冯伟明, 许庆彦, 柳百成, 等. 铝合金微观组织模拟及并行计算[J]. 清华大学学报 (自然科学版), 2003, 43(5): 605-608.FENG Weiming, XU Qingyan, LIU Baicheng, et al. Microstructure simulation of aluminum alloy using parallel processors [J]. J Tsinghua Univ (Sci & Tech), 2003, 43(5): 605-608. (in Chinese)
url: http://dx.doi.org/nghua Univ (Sci
[5] Zhang T, Fang E, Liu P, et al. Modeling and simulation of 2012 Sandia fracture challenge problem: Phantom paired shell for Abaqus and plane strain core approach [J]. International Journal of Fracture, 2013, 186: 117-139.
[6] 朱浩. 车用铝合金变形损伤和断裂机理研究与材料表征及有限元模拟[D]. 兰州: 兰州理工大学, 2008.ZHU Hao. Study on Deformation Mechanism of Damage and Fracture of Aluminum Alloy and Material Characterization and Finite Element Simulation [D]. Lanzhou: Lanzhou University of Technology, 2008. (in Chinese)
[7] Bai Y, Wierzbicki T. Application of extended Mohr-Coulomb criterion to ductile fracture [J]. International Journal of Plasticity, 2010, 161: 1-20.
[8] Algarni M, Bai Y, Choi Y. A study of Inconel 718 dependency on stress triaxiality and Lode angle in plastic deformation and ductile fracture [J]. Engineering Fracture Mechanics, 2015, 147: 140-157.
url: http://dx.doi.org/10.1016/j.engfracmech.2015.08.007
[9] Pack K, Luo M, Wierzbicki T. Sandia fracture challenge: Blind prediction and full calibration to enhance the fracture predictability [J]. International Journal of Fracture, 2014, 186(2): 155-175.
[10] Huang G, Zhu H, Sriram S. Fracture prediction and correlation of ALSI hot stamped steels with different models in LS-DYNA(R) [C]//13th International LS-DYNA Users Conference 2014. Dearborn, MI, 2014.
[11] Bai Y, Wierzbicki T. A comparative study of three groups of ductile fracture loci in the 3D space [J]. Engineering Fracture Mechanics, 2015, 135: 147-167.
url: http://dx.doi.org/10.1016/j.engfracmech.2014.12.023
[12] 高付海, 桂良进, 范子杰. 两种新型单拉平板剪切试件的设计与对比[J]. 清华大学学报 (自然科学版), 2010, 50(2): 299-302.GAO Fuhai, GUI Liangjin, FAN Zijie. Design and comparison of two new in-plane shear specimens [J]. J Tsinghua Univ (Sci & Tech), 2010, 50(2): 299-302. (in Chinese)
url: http://dx.doi.org/nghua Univ (Sci
[13] 朱俊儿, 孟艳, 罗海灵, 等. 一种针对颈缩现象的高强钢板材力学行为研究方法[J]. 北京理工大学学报, 2014, 34(S1): 75-78.ZHU Juner, MENG Yan, LUO Hailing, et al. A hybrid experimental-numerical converse method for the necking behaviour study of high strength steel sheets [J]. Transactions of Beijing Institute of Technology, 2014, 34(S1): 75-78. (in Chinese)
[1] DOU Zihao, ZHAO Zhihong, GAO Tianyang, LI Jinjin, YANG Qiang. Evolution law of water-rock interaction on the shear behavior of granite fractures[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(8): 792-798.
[2] MAN Ke, LIU Xiaoli, SONG Zhifei, GUO Zhanfeng, LIU Zongxu, YU Yunhe. Macro-micro experimental study of rock static and dynamic fracture toughness[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(8): 799-808.
[3] HE Chen, YAO Chi, SHAO Yulong, HUANG Fan, ZHOU Chuangbing. Effective permeability of three-dimensional fractured rock with low fracture densities[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(8): 827-832.
[4] DONG Mingye, ZHAO Yue, JIA Jinlong, LI Quan, WANG Fude, WU Aiping. Development of segmented cambered body heat source model in numerical simulations of aluminum alloy cylindrical walls[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(10): 823-830.
[5] SHI Qingyu, CAO Xiong, LI Jiyuan, CHEN Gaoqiang, LIU Qu. Improved mechanical properties in friction stir processed carbon fiber reinforced aluminum composites[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(8): 792-797.
[6] LI Yanjun, WU Aiping, LIU Debo, ZHAO Haiyan, ZHAO Yue, WANG Guoqing. Numerical simulations of welding residual stresses in VPTIG-welded joints of the 2219 aluminum alloy[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(10): 1037-1041,1046.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd