Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2017, Vol. 57 Issue (5) : 530-536     DOI: 10.16511/j.cnki.qhdxxb.2017.22.033
NUCLEAR AND NEW ENERGY TECHNOLOGY |
Effect of non-condensable gases on steam condensation in a vertical pipe with forced convection
MA Xizhen, JIA Haijun, LIU Yang
Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
Download: PDF(1336 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Non-condensable gases have an important influence on steam condensation by increasing the thermal resistance during condensation and decreasing the heat transfer coefficient. A heat and mass analogy model based on the Nusselt's theory is developed for steam condensation in a vertical pipe with forced convection. The predicted effects of the non-condensable gases on the condensation are with agreement with experimental data. The heat transfer coefficient in the inlet varies from 4.8 kW/(m2·K) to 1.2 kW/(m2·K) for inlet air mass fractions from 8.73% to 22.45%. The heat transfer coefficient then decreases along the pipe. Increasing the inlet temperature from 100 ℃ to 140 ℃ reduces the inlet heat transfer coefficient. The research shows that the inlet temperature and the kind and the mass fraction of non-condensable gas are the important factors governing steam condensation rate.
Keywords non-condensable gas      condensation      heat and mass transfer      forced convection     
ZTFLH:  TK124  
Issue Date: 15 May 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MA Xizhen
JIA Haijun
LIU Yang
Cite this article:   
MA Xizhen,JIA Haijun,LIU Yang. Effect of non-condensable gases on steam condensation in a vertical pipe with forced convection[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(5): 530-536.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2017.22.033     OR     http://jst.tsinghuajournals.com/EN/Y2017/V57/I5/530
  
  
  
  
  
[1] Othmer D F. The condensation of steam [J]. Industrial & Engineering Chemistry, 1929, 21(6): 576-583.
url: http://dx.doi.org/trial
[2] Al-Diwany H K, Rose J W. Free convection film condensation of steam in the presence of non-condensing gases [J]. International Journal of Heat and Mass Transfer, 1973, 16(7): 1359-1369.
[3] Rose J W. Condensation of a vapour in the presence of a non-condensing gas [J]. International Journal of Heat and Mass Transfer, 1969, 12(2): 233-237.
[4] Minkowycz W J, Sparrow E M. Condensation heat transfer in the presence of noncondensables, interfacial resistance, superheating, variable properties, and diffusion [J]. International Journal of Heat and Mass Transfer, 1966, 9(10): 1125-1144.
[5] Huhtiniemi I K, Corradini M L. Condensation in the presence of noncondensable gases [J]. Nuclear Engineering and Design, 1993, 141(3): 429-446.
[6] Oh S, Revankar S T. Experimental and theoretical investigation of film condensation with noncondensable gas [J]. International Journal of Heat and Mass Transfer, 2006, 49(15): 2523-2534.
[7] Dehbi A A. The Effects of Noncondensable Gases on Steam Condensation under Turbulent Natural Convection Conditions [D]. Cambridge, MA, USA: Massachusetts Institute of Technology, 1991.
[8] Lee K Y, Kim M H. Effect of an interfacial shear stress on steam condensation in the presence of a noncondensable gas in a vertical tube [J]. International Journal of Heat and Mass Transfer, 2008, 51(21): 5333-5343.
[9] Maheshwari N K, Saha D, Sinha R K. Investigation on condensation in presence of a noncondensable gas for a wide range of Reynolds number [J]. Nuclear Engineering and Design, 2004, 227(2): 219-238.
[10] MacAdams W H. Heat Transmission [M]. New York: McGraw-Hill, 1954.
[11] Siddique M. The Effects of Noncondensable Gases on Steam Condensation under Forced Convection Conditions [D]. Cambridge, MA, USA: Massachusetts Institute of Technology, 1992.
[12] Bird R B. Transport phenomena [J]. Applied Mechanics Reviews, 2002, 55(1): R1-R4.
[13] Nithianandan C K, Morgan C D, Shah N H, et al. RELAP5/MOD2 model for surface condensation in the presence of noncondensable gases [C]//Proc 8th Int Heat Transfer Conf. Washington DC, USA: Hemisphere Publishing, 1986, 4: 1627-1633.
[14] Kays W M, Moffat R J. The Behavior of Transpired Turbulent Boundary Layers [R]. NASA STI/Recon Technical Report N, 1975, 75, 32383.
[15] Uchida H, Oyama A, Togo Y. Evaluation of Post-Incident Cooling Systems of Light Water Power Reactors: No.A/CONF.28/P/436 [R]. Tokyo: Tokyo University, 1964.
[16] Akaki H, Kataoka Y, Murase M. Measurement of condensation heat transfer coefficient inside a vertical tube in the presence of noncondensable gas [J]. Journal of Nuclear Science and Technology, 1995, 32(6): 517-526.
[1] LIU Qian, GUI Nan, YANG Xingtuan, TU Jiyuan, JIANG Shengyao. Numerical simulation of saturated steam condensation heat exchange in a vertical channel[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(8): 1273-1281.
[2] LI Jian, YANG Zhen, DUAN Yuanyuan. Organic Rankine cycles using zeotropic mixtures driven by low-to-medium temperature thermal energy[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(4): 693-703.
[3] WEN Rongfu, DU Bingang, YANG Siyan, LIU Yuanbo, LI Qixun, CHENG Yaqi, LAN Zhong, MA Xuehu. Advances in condensation heat transfer enhancement[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(12): 1353-1370.
[4] GU Junping, LIU Qi, WU Yuxin, WANG Qinggong, LYU Junfu. Heat transfer correlation for subcooled flow boiling of saline solutions[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(12): 1397-1404.
[5] SHEN Zhijie, MIN Jingchun, DUAN Jiangfei. Numerical study on influence of supply inlet air parameter distribution on a membrane-type total heat exchanger[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(11): 958-966.
[6] XIAO Hong, CAO Zhiwei, FENG Yingjie, YANG Zhiyi, ZHU Jianmin. AP1000 containment accident transient analysis using MELCOR[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(11): 1029-1036.
[7] Feng JIANG, Ziwei ZHUANG, Zhenzhong ZHANG, Jiying WEI. Evaporation-condensation technology for testing the efficiency of HEPA filter media[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 629-632.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd