Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2017, Vol. 57 Issue (8) : 785-791     DOI: 10.16511/j.cnki.qhdxxb.2017.22.038
MECHANICAL ENGINEERING |
Kinematics analysis and trajectory planning for a welding robot for girth welding of box-type steel structures
ZHU Zhiming, GUO Jichang, MA Guorui, LIU Bo
Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(1812 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  A straight-arc combined orbital welding robot system was designed for girth welding of box-type steel structures at construction sites. The kinematics analyses used the standard D-H model and the Craig modified D-H model for this welding robot with evluations based on the modeling accuracy and solution process for the welding torch trajectory planning for girth welding of box-type steel structures. The trajectory planning method could adjust for arbitrary spatial position and posture relative to the welding torch with the minimum degrees of freedom. The planning mehtod gave an efficient trajectory for right-angle welding of the box-type steel structure. Simulations show that the welding robot system can provide the girth welding of box-type steel structures and can ajust to various spatial positions and postures.
Keywords welding robot      box-type steel structure      D-H model      kinematics analysis      welding trajectory planning     
ZTFLH:  TP242.3  
Issue Date: 15 August 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHU Zhiming
GUO Jichang
MA Guorui
LIU Bo
Cite this article:   
ZHU Zhiming,GUO Jichang,MA Guorui, et al. Kinematics analysis and trajectory planning for a welding robot for girth welding of box-type steel structures[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(8): 785-791.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2017.22.038     OR     http://jst.tsinghuajournals.com/EN/Y2017/V57/I8/785
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] Sato O, Shimizu S, Nakayama S, et al. Multi-layer welding robots for structural steel frames[J]. Welding International, 1988, 2(10):917-921.
[2] Fukuhara N, Shiga A, Hashimoto J, et al. Development of a robot system for large assembly welding of steel columns[J]. Welding International, 1992, 6(10):827-830.
[3] Yoshikawa K, Tanaka K. Welding robots for steel frame structures[J]. Computer-Aided Civil and Infrastructure Engineering, 2002, 12(1):43-56.
[4] Nagata M, Baba N, Tachikawa H, et al. Steel frame welding robot systems and their application at the construction site[J]. Computer-Aided Civil and Infrastructure Engineering, 1997, 12(1):15-30.
[5] 朱志明, 倪真, 马国锐, 等. 一种箱型钢结构轨道式全位置焊接机器人:CN103286494 B[P]. 2015-05-20.ZHU Zhiming, NI Zhen, MA Guorui, et al. Rail Type All-Position Welding Robot for Box-Type Steel Structures:CN103286494 B[P]. 2015-05-20. (in Chinese)
[6] 朱志明, 马国锐, 刘晗, 等. 箱型钢结构焊接机器人系统机构设计与研究[J]. 焊接, 2014(3):2-7.ZHU Zhiming, MA Guorui, LIU Han, et al. The structure design of box-type steel structure welding robot[J]. Welding & Joining, 2014(3):2-7. (in Chinese)
[7] 朱志明, 马国锐, 郭吉昌, 等. 基于蒙特卡洛法的箱型钢结构焊接机器人工作空间分析[J]. 焊接, 2016(9):1-5.ZHU Zhiming, MA Guorui, GUO Jichang, et al. Analysis of box-type steel structure welding robot workspace based on Monte Carlo method[J]. Welding & Joining, 2016(9):1-5. (in Chinese)
[8] Denavit J, Hartenberg R S. A kinematic notation for lower-pair mechanisms based on matrices[J]. Trans of the ASME Journal of Applied Mechanics, 1955, 22:215-221.
[9] Craig J J. Introduction to robotics:Mechanics and control[J]. Automatica, 1987, 23(2):263-264.
[10] Hayati S, Mirmirani M. Improving the absolute positioning accuracy of robot manipulators[J].Journal of Robotic Systems, 1985, 2(4):397-413.
[11] Hayati S A. Robot arm geometric link parameter estimation[C]//IEEE Conference on Decision and Control. San Antonio, TX, USA, 1983:1477-1483.
[12] Veitschegger W, Wu C H. A method for calibrating and compensating robot kinematic errors[C]//IEEE International Conference on Robotics and Automation. Raleigh, NC, USA, 1987:39-44.
[13] Stone H W, Sanderson A C. Statistical performance evaluation of the S-model arm signature identification technique[C]//IEEE International Conference on Robotics and Automation. Philadelphia, PA, USA, 1988, 2:939-946.
[14] Zhuang H, Roth Z S, Hamano F. A complete and parametrically continuous kinematic model for robot manipulators[J]. IEEE Transactions on Robotics & Automation, 1992, 8(4):451-463.
url: http://dx.doi.org/Transactions on Robotics
[15] Niku S B. Introduction to Robotics:Analysis, Control, Applications[M]. Upper Saddle River, USA:Prentice Hall, 2001.
[16] 蔡自兴, 谢斌. 机器人学[M]. 3版. 北京:清华大学出版社, 2015. CAI Zixing, XIE Bin. Robotics[M]. 3rd ed. Beijing:Tsinghua University Press, 2015. (in Chinese)
[1] FENG Xiaobing, PAN Jiluan, GAO Lisheng, TIAN Wei, WEI Ran, PAN Baiwa, CHEN Yong, CHEN Suyun. Wall climbing welding robot for automatic welding of spherical tanks[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(10): 1132-1143.
[2] GUO Jichang, ZHU Zhiming, WANG Xin, MA Guorui. Numerical solution of the inverse kinematics and trajectory planning for an all-position welding robot[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(3): 292-297.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd