Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2017, Vol. 57 Issue (8) : 803-809     DOI: 10.16511/j.cnki.qhdxxb.2017.22.041
MECHANICAL ENGINEERING |
Dynamic isotropic performance evaluation of a 3-DOF parallel manipulator
ZHANG Binbin, WANG Liping, WU Jun
Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(1748 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Dynamic modeling was used to evaluate a 3-PRRU parallel manipulator in a high-speed hybrid machine tool. The virtual work principle was used to develop the dynamic model of the 3-PRRU parallel mechanism with two new indices defined to evaluate the isotropy of dynamics from a kinetic energy viewpoint. The indices were then used in an atlas method for a five dimensions image. The results show that these indices accurately describe the isotropic performance of the 3-PRRU parallel manipulator. The two indices have uniform dimensions, clear physical meaning, and can accurately describe the dynamics of parallel manipulators.
Keywords parallel manipulator      dynamic model      performance evaluation      isotropic     
ZTFLH:  TP242.2  
Issue Date: 15 August 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Binbin
WANG Liping
WU Jun
Cite this article:   
ZHANG Binbin,WANG Liping,WU Jun. Dynamic isotropic performance evaluation of a 3-DOF parallel manipulator[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(8): 803-809.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2017.22.041     OR     http://jst.tsinghuajournals.com/EN/Y2017/V57/I8/803
  
  
  
  
[1] 汪劲松, 黄田. 并联机床:机床行业面临的机遇与挑战[J]. 中国机械工程, 1999(10):31-35. WANG Jinsong, HUANG Tian. Parallel machine tool:The opportunities and challenges of machine tool industry[J]. China Mechanical Engineering, 1999(10):31-35. (in Chinese)
[2] Wang L P, Zhang B B, Wu J. Optimum design of a 4-PSS-PU redundant parallel manipulator based on kinematics and dynamics[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2016, 230(13):2273-2284.
[3] Gosselin C, Angeles J. A global performance index for the kinematic optimization of robotic manipulators[J]. Journal of Mechanical Design, 1991, 113(3):220-226.
[4] Gao F, Liu X J, Gruver W A. Performance evaluation of two-degree-of-freedom planar parallel robots[J]. Mechanism and Machine Theory, 1998, 33(6):661-668.
[5] Huang T, Li Z X, Li M, et al. Conceptual design and dimensional synthesis of a novel 2-DOF translational parallel robot for pick-and-place operations[J]. Journal of Mechanical Design, 2004, 126(3):449-455.
[6] Hennes N. Ecospeed:An innovative machinery concept for high performance 5-axis machining of large structural components in aircraft engineering[C]//Proceedings of 3rd Chemnitz Parallel Kinematics Seminar. Zwickau, Germany, 2002:763-774.
[7] Neumann K E. Tricept applications[C]//Proceeding of 3rd Chemnitz Parallel Kinematic Seminar. Zwickau, Germany, 2002:547-551.
[8] Clavel R. A fast robot with parallel geometry[C]//Proc Int Symposium on Industrial Robots. Lausanne, Switzerland, 1988:91-100.
[9] Asada H. A geometrical representation of manipulator dynamics and its application to arm design[J]. Journal of Dynamic Systems Measurement and Control, 1983, 105(3):131-142.
[10] Wu J, Wang J S, Li T M, et al. Dynamic dexterity of a planar 2-DOF parallel manipulator in a hybrid machine tool[J]. Robotica, 2008, 26(1):93-98.
[11] Wu J, Wang L P, You Z. A new method for optimum design of parallel manipulator based on kinematics and dynamics[J]. Nonlinear Dynamics, 2010, 61(4):717-727.
[12] Bonev I A. Geometric Analysis of Parallel Mechanisms[D]. Québec, Canada:Université Laval, 2002:78-81.
[1] LI Jian, WANG Shenghai, LIU Jiang, GAO Yufu, HAN Guangdong, SUN Yuqing. Dynamic modeling and robust control of cable-driven cleaning robot for marine multi-curvature bulkhead[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(3): 562-577.
[2] LI Dongxing, HOU Senhao, SUN Haining, LI Fan, TANG Xiaoqiang. Test equipment for a parachute tear-band to measure the cable force dynamics[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(3): 294-301.
[3] WANG Yutian, ZHANG Ruijie, WU Jun, WANG Jinsong. Evaluation of the dynamic performance fluctuations of a mobile hybrid spray-painting robot[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 971-977.
[4] MENG Qizhi, XIE Fugui, LIU Xinjun, YUAN Xin, XUE Long. Design of a high-speed and high-load parallel robot[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 416-426.
[5] ZHANG Zhihan, LIU Hui, L�Zhenlei, HOU Yansong, SUN Lifeng, WANG Shi, WU Zhaoxia, LIU Yaqiang. Design and numerical simulations of a large animal SPECT system[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(12): 1875-1883.
[6] HOU Senhao, TANG Xiaoqiang, SUN Haining, CUI Zhiwei, WANG Dianjun. Transfer characteristics of high-speed cable forces for spacecraft separation[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(3): 177-182.
[7] TAN Tian, CHEN Kainan, LIN Qiuqiong, JIANG Ye, ZHAO Zhengming. Dynamic analysis and multi-objective parameter optimization in multi-receiver wireless power transfer systems[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(10): 1066-1078.
[8] Yutian WANG,Jiahao QIU,Jun WU,Binbin ZHANG. Dynamics of a three-axis loading mechanism for machine tool reliability tests[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(12): 1023-1029.
[9] XU Zhi, MA Jing, WANG Hao, ZHAO Jianshi, HU Yajie, YANG Guiyu. Key indicator and critical condition for the water resource carrying capacity in the Yangtze River Estuary[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(5): 364-372.
[10] YU Zhenyang, WU Jun, ZHANG Binbin. Energy consumption of a two-axis solar tracker with redundantly actuated parallel mechanism[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(4): 284-290.
[11] WANG Kai, LIU Ronghua, WEI Jiahua, LIU Qi, WANG Guangqian. Model integration methods in the hydro-modeling platform (HydroMP) based on cloud computing[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(12): 1006-1015.
[12] WANG Xiaojian, WU Jun, YUE Yi, XU Yundou. Dynamic performance evaluation of a 2UPU/SP three-DOF parallel mechanism[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(10): 838-846.
[13] YANG Fei, FU Xudong. 3-D hydrodynamic model using the spectral method in the vertical direction for bend flow simulations[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(10): 914-920.
[14] WEI Qingyang, WANG Fenhua, XU Tianpeng, JIA Chao, JIANG Nianming, GU Yu, MA Tianyu, LIU Yaqiang. Performance evaluation of a PET detector witha sparse SiPM array and gap reflectors[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(10): 929-933.
[15] ZHANG Ting, WANG Yi, YANG Tong, LU Jianyuan, LIU Bin. Design and implementation of an evaluation platform for NDN name lookup algorithms[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(1): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd