Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2017, Vol. 57 Issue (8) : 826-831     DOI: 10.16511/j.cnki.qhdxxb.2017.22.045
ENGINEERING PHYSICS |
Anomaly gamma spectra detection based on principal component analysis and the Mahalanobis distance
ZHAO Ri1,2, LIU Liye2, LI Junli1
1. Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. China Institute of Radiation Protection, Taiyuan 030006, China
Download: PDF(1195 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  A principal component analysis (PCA) and Mahalanobis distance (MD) based anomaly gamma spectra detection method is developed to improve the reliability of radiation scanning of goods and human bodies. This method first extracts all the principal components (PCs) of large numbers of benign gamma spectra by PCA and selects several largest PCs to form a subspace. The algorithm then projects the benign, unknown gamma spectra to this subspace, calculates their MDs, and completes the anomaly detection by comparing these MDs. Monte Carlo simulations and actual tests show that the method is reliable and effective when the subspace has more than 99% of the original information.
Keywords gamma spectra      anomaly detection      artificial intelligence      principal component analysis      Mahalanobis distance     
ZTFLH:  TL81  
Issue Date: 15 August 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Ri
LIU Liye
LI Junli
Cite this article:   
ZHAO Ri,LIU Liye,LI Junli. Anomaly gamma spectra detection based on principal component analysis and the Mahalanobis distance[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(8): 826-831.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2017.22.045     OR     http://jst.tsinghuajournals.com/EN/Y2017/V57/I8/826
  
  
  
  
  
  
  
  
  
[1] Canberra Industries. Genie 2000 Customization Tools Manual[R]. Meriden, CT:Canberra Industries, 2006:300-310.
[2] Advanced Measurement Technology. GammaVision V6 Users Manual[R]. Oak Ridge, TN:Advanced Measurement Technology, 2006:180-185.
[3] Boardman D, Reinhard M, Flynn A. Principal component analysis of gamma-ray spectra for radiation portal monitors[J]. IEEE Transactions on Nuclear Science, 2012, 59(1):154-161.
[4] Runkle R, Tardiff F, Anderson K, et al. Analysis of spectroscopic radiation portal monitor data using principal components analysis[J]. IEEE Transactions on Nuclear Science, 2006, 53(3):1418-1425.
[5] Dragovic S, Onjia A. Classification of soil samples according to their geographic origin using gamma-ray spectrometry and principal component analysis[J]. Journal of Environmental Radioactivity, 2006, 89:150-158.
url: http://dx.doi.org/10.1016/j.jenvrad.2006.05.002
[6] Heggemanna T, Welpa G, Amelung W, et al. Proximal gamma-ray spectrometry for site-independent in situ prediction of soil texture on ten heterogeneous fields in Germany using support vector machines[J]. Soil & Tillage Research, 2017, 168:99-109.
[7] Varley A, Tyler A, Smith L, et al. Mapping the spatial distribution and activity of <sup>226</sup>Ra at legacy sites through machine learning interpretation of gamma-ray spectrometry data[J]. Science of the Total Environment, 2016, 545:654-661.
[8] Wang C L, Funk L, Riedel R, et al. Improved neutron-gamma discrimination for a <sup>3</sup>He neutron detector using subspace learning method[J]. Nuclear Instruments and Methods in Physics Research A, 2017, 853:27-35.
url: http://dx.doi.org/10.1016/j.nima.2017.02.022
[9] Hata H, Yokoyama K, Ishimori Y, et al. Application of support vector machine to rapid classification of uranium waste drums using low-resolution γ-ray spectra[J]. Applied Radiation and Isotopes, 2015, 104:143-146.
url: http://dx.doi.org/10.1016/j.apradiso.2015.06.030
[10] 杨杨. 基于模糊聚类的地层岩性测井识别研究与配套软件研制[D]. 成都:西南石油大学, 2014.YANG Yang. Research and Development of Formation Lithology Logging Identification and Matching Software Based on Fuzzy Clustering[D]. Chengdu:Southwest Petroleum University, 2014. (in Chinese)
[11] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016.ZHOU Zhihua. Machine Learning[M]. Beijing:Tsinghua University Press, 2016. (in Chinese)
[12] Han J, Kamber M, Pei J. Data Mining:Concepts Techniques[M]. Singapore:Elsevier (Singapore) Pte Ltd, 2012.
[1] WANG Yun, HU Min, TA Na, SUN Haitao, GUO Yifeng, ZHOU Wuai, GUO Yu, ZHANG Wanzhe, FENG Jianhua. Large language models and their application in government affairs[J]. Journal of Tsinghua University(Science and Technology), 2024, 64(4): 649-658.
[2] XIONG Qian, TANG Wenzhe, WANG Zhongjing. Factor analysis and system construction of integrated water resource management in the Xiong'an New Area[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(2): 255-263.
[3] LI Qingbin, MA Rui, HU Yu, HUANGFU Zehua, SHEN Yiyuan, ZHOU Shaowu, MA Jingang, AN Zaizhan, GUO Guangwen. A review of intelligent dam construction techniques[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(8): 1252-1269.
[4] LIU Tianyun. 3D printing of large filled construction projects[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(8): 1281-1291.
[5] LU Sicong, LI Chunwen. Human-machine conversation system for chatting based on scene and topic[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(5): 952-958.
[6] LI Ruimin, WANG Changjun. Development of advanced traffic management systems[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 509-515.
[7] YANG Yaqin, XU Peng, WU Xishui. Adaptive modeling method based on the Fast-MCD to analyze railway track irregularity deterioration[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 516-522.
[8] WANG Zhiguo, ZHANG Yujin. Anomaly detection in surveillance videos: A survey[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(6): 518-529.
[9] LIANG Jie, CHEN Jiahao, ZHANG Xueqin, ZHOU Yue, LIN Jiajun. One-hot encoding and convolutional neural network based anomaly detection[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(7): 523-529.
[10] SONG Yubo, YANG Huiwen, WU Wei, HU Aiqun, GAO Shang. Joint DDoS detection system based on software-defined networking[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(1): 28-35.
[11] HUANG Zhongshan, TIAN Ling, XIANG Dong, WEI Yaozhong. Prediction of oil temperature variations in a wind turbine gearbox based on PCA and an SPC-dynamic neural network hybrid[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(6): 539-546.
[12] CHEN Xingshu, CHEN Jiaxin, ZHAO Dandan, JIN Xin. Anomaly detection based on IO sequences in a virtual machine with the Markov mode[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(4): 395-401,410.
[13] JIA Fan, YAN Yan, ZHANG Jiaqi. K-means based feature reduction for network anomaly detection[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(2): 137-142.
[14] CHEN Xiaofang, QIAN Yingcan, WANG Yalin, YANG Chunhua. Dynamic adjustment interval identification of hydrocracking based on principal component derivative feature clustering[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(1): 81-86.
[15] LIU Jinzhao, ZHOU Yuezhi, ZHANG Yaoxue. Wavelet-based approach for anomaly detection of online services in cloud computing systems[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(5): 550-554.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd