Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2017, Vol. 57 Issue (4) : 345-350     DOI: 10.16511/j.cnki.qhdxxb.2017.25.002
HYDRAULIC ENGINEERING |
Size effects of concrete gravity dams based on XFEM analyses
SHI Jie, LI Qingbin
State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(1233 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Similarity model test results cannot be simply converted to the prototype without consideration of the size effect. The extended finite element method (XFEM) was used to analyze the failure mechanism and overall structure strength of a type of prenotched gravity dam. The size effect was investigated by analyzing the nominal strength of geometrically similar prenotched gravity dams with various sizes. The nominal strength and failure mechanism were analyzed for two sets of models with an extra centrifugal force and a self-weight force. The results show that the structural strength in the centrifugal models decreases exponentially and tends to be stable for larger sizes, while in gravitational models the strength decreases exponentially up to a critical height and then increases gradually due the self-weight contribution. The relative length of the fracture process zone is an intrinsic factor while the self-weight stress is an external loading factor for the effect of size on the structural strength.
Keywords hydraulic structures      gravity dam      size effect      centrifugal model      gravitational model     
ZTFLH:  TV313  
Issue Date: 15 April 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHI Jie
LI Qingbin
Cite this article:   
SHI Jie,LI Qingbin. Size effects of concrete gravity dams based on XFEM analyses[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(4): 345-350.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2017.25.002     OR     http://jst.tsinghuajournals.com/EN/Y2017/V57/I4/345
  
  
  
  
  
  
  
  
  
[1] 周维垣, 杨若琼, 刘耀儒, 等. 高拱坝整体稳定地质力学模型试验研究[J]. 水力发电学报, 2005, 24(1): 53-58.ZHOU Weiyuan, YANG Ruoqiong, LIU Yaoru, et al. Research on geomechanical model of rupture tests of arch dams for their stability[J]. Shuili Fadian Xuebao, 2005, 24(1): 53-58.(in Chinese)
[2] Renzi R, Ferrara G, Mazza G. Cracking in a concrete gravity dam: A centrifugal investigation[C]//Dam Fracture and Damage. Rotterdam, Netherlands: A.A. Balkema, 1994: 103-109.
[3] REN Qingwen, JIANG Yazhou. Ultimate bearing capacity of concrete dam involved in geometric and material nonlinearity[J]. Science China Technological Sciences, 2011, 54(3): 509-515.
[4] Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8): 892-900.
[5] Oliveira S, Faria R. Numerical simulation of collapse scenarios in reduced scale tests of arch dams[J]. Engineering Structures, 2006, 28(10): 1430-1439.
[6] 魏博文, 乐豪峰, 胡凯, 等. 基于内时损伤的混凝土拱坝结构分析方法研究[J]. 水电能源科学, 2012, 30(3): 77-80.WEI Bowen, LE Haofeng, HU Kai, et al. Structure analysis method of concrete arch dam based on endochronic damage[J]. Water Resources and Power, 2012, 30(3): 77-80.(in Chinese)
[7] Hillerborg A, Modéer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773-781.
[8] Ba?ant Z P, Oh B H. Crack band theory for fracture of concrete[J]. Materials and Structures, 1983, 16(3): 155-177.
[9] Ba?ant Z P. Size effect on structural strength: A review[J]. Archive of Applied Mechanics, 1999, 69(9): 703-725.
[10] Ba?ant Z P. Scaling laws in mechanics of failure[J]. Journal of Engineering Mechanics, 1993, 119(9): 1828-1844.
[11] Weibull W. A statistical distribution function of wide applicability[J]. Journal of Applied Mechanics, 1951, 18(3): 293-297.
[12] Le J L, Ba?ant Z P. Scaling of static fracture of quasi-brittle structures: Strength, lifetime, and fracture Kinetics[J]. Journal of Applied Mechanics, 2012, 79(3): 1-10.
[13] Ba?ant Z P. Size effect in blunt fracture: Concrete, rock, metal[J]. Journal of Engineering Mechanics, 1984, 110(4): 518-535.
[14] Ba?ant Z P, Vor?echovský M, Novák D. Asymptotic prediction of energetic-statistical size effect from deterministic finite-element solutions[J]. Journal of Engineering Mechanics, 2007, 133(2): 153-162.
[15] Duan K, Hu X, Wittmann F. Boundary effect on concrete fracture and non-constant fracture energy distribution[J]. Engineering Fracture Mechanics, 2003, 70(16): 2257-2268.
[16] Carpinteri A. Fractal nature of material microstructure and size effects on apparent mechanical properties[J]. Mechanics of Materials, 1994, 18(2): 89-101.
[17] Carpinteri A, Chiaia B, Ferro G. Size effects on nominal tensile strength of concrete structures: Multifractality of material ligaments and dimensional transition from order to disorder[J]. Materials and Structures, 1995, 28(6): 311-317.
[18] Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620.
[19] Melenk J M, Babuška I. The partition of unity finite element method: Basic theory and applications[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1): 289-314.
[20] Moёs N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131-150.
[21] Barpi F, Valente S. Numerical simulation of prenotched gravity dam models[J]. Journal of Engineering Mechanics, 2000, 126(6): 611-619.
[22] 杜效鹄, 潘家铮. 重力坝模型的尺寸效应[J]. 水利学报, 2006, 37(3): 293-300.DU Xiaohu, PAN Jiazheng. Size effect in gravity dam model[J]. Journal of Hydraulic Engineering, 2006, 37(3): 293-300.(in Chinese)
[1] QI Ningchun, NIE Qiang, LAI Jitao, CHEN Yongcan, LI Yonglong. Key technology and practice of intelligent underwater inspection in multiple scenarios of hydropower station[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1124-1134.
[2] XU Xiaorong, HE Taohong, LEI Zhengqi, ZHANG Quanyi, LI Cong, JIN Feng. Safety evaluation of rock-filled concrete gravity dam with long section during the impoundment operation period[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1375-1387.
[3] CHENG Heng, ZHOU Qiujing, LOU Shijian, ZHANG Guoxin, LIU Yi, LEI Zhengqi. Simulation of the working behavior of Shibahe reservoir rock-filled concrete gravity dam during construction[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1408-1416.
[4] Zheng ZUO,Yu HU,Qingbin LI,Bingfeng LI,Tao HUANG. Temperature monitoring during concrete setting through cooling pipe monitors[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(1): 21-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd