Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2017, Vol. 57 Issue (4) : 388-392,398     DOI: 10.16511/j.cnki.qhdxxb.2017.25.009
ELECTRICAL ENGINEERING |
Iterative compensation algorithm for the phase noise in high-data-rate satellite communications
PEI Yukui1, SUO Wanping2
1. Tsinghua Space Center, Beijing 100084, China;
2. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(1468 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Phase noise can impair the BER performance of high-data-rate satellite communications. The influence of the phase noise varies in the two frequency bands in both the uncoded or low-density parity-check (LDPC) coded communication systems. This paper presents a simulation and then an iterative compensation algorithm for the LDPC codes for the phase noise in the higher frequency band, which significantly degrades the high order modulation systems performance. The algorithm first compares the phases of the receiving and after-decoding symbols, extracts the difference based on the low-pass and narrow-band characteristics of the phase noise, and their compensates for the losses in an iteration loop. Simulations show that the method improves the LDPC-coded systems performance when the phase noise significantly degrades the signal.
Keywords phase noise      high data rate      LDPC codes      iterative compensation     
ZTFLH:  TN927  
Issue Date: 15 April 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PEI Yukui
SUO Wanping
Cite this article:   
PEI Yukui,SUO Wanping. Iterative compensation algorithm for the phase noise in high-data-rate satellite communications[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(4): 388-392,398.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2017.25.009     OR     http://jst.tsinghuajournals.com/EN/Y2017/V57/I4/388
  
  
  
  
  
  
  
  
[1] Stark A, Raphaeli D. Combining decision-feedback equalization and carrier recovery for two-dimensional signal constellations[J]. IEEE Trans Commun, 2007, 55(10): 2012-2012.
[2] Zou Q, Tarighat A, Sayed A H. Compensation of phase noise in OFDM wireless systems[J]. IEEE Transactions on Signal Processing, 2007, 55(11): 5407-5424.
[3] 龙毅, 匡麟玲, 陆建华. 高阶调制OFDM的联合似然估计算法[J]. 清华大学学报(自然科学版), 2009, 49(4): 566-569. LONG Yi, KUANG Linling, LU Jianhua. Joint ML estimation algorithm for higher-order OFDM systems[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(4): 566-569. (in Chinese)
[4] Krishnan R, Khanzadi M R, Svensson L, et al. Variational Bayesian framework for receiver design in the presence of phase noise in MIMO systems[C]//2012 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway, NJ: IEEE Press, 2012: 347-352.
[5] Yao Y, Zheng J, Feng Z. Channel capacity estimation in TDMS-based MIMO measurements[J]. Tsinghua Science & Technology, 2011, 16(4): 371-376.
url: http://dx.doi.org/hua Science
[6] Lottici V, Luise M. Carrier phase recovery for turbo-coded linear modulations[C]//2002 IEEE International Conference on Communication. Piscataway, NJ: IEEE Press, 2002: 1541-1545.
[7] Colavolpe G, Barbieri A, Caire G. Algorithms for iterative decoding in the presence of strong phase noise[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(9): 1748-1757.
[8] Worthen A P, Stark W E. Unified design of iterative receivers using factor graphs [J]. IEEE Transactions on Information Theory, 2001,47(2): 843-849.
[9] Kschischang F R, Frey B J, Loeliger H A. Factor graphs and the sum-product algorithm [J]. IEEE Transactions on Information Theory, 2001,47(2): 498-519.
[10] Colavolpe G, Barbieri A, Caire G, et al. Bayesian and non-Bayesian methods for iterative joint decoding and detection in the presence of phase noise [C]//Proceedings of the 2004 IEEE International Symposium on Information Theory. Piscataway, NJ: IEEE Press, 2004: 131.
[11] Colavolpe G, Barbieri A, Caire G. A Bayesian method for iterative joint detection and decoding in the presence of phase noise [C]//12th European Signal Processing Conference. Piscataway, NJ: IEEE Press, 2004: 845-848.
[12] Koike-Akino T, Millar D S, Kojima K, et al. Phase noise-robust LLR calculation with linear/bilinear transform for LDPC-coded coherent communications [C]//2015 Conference on Lasers and Electro-Optics (CLEO). Piscataways, NJ: IEEE Press, 2015: 3.
[13] 高宇洁. OFDM系统中相位噪声的影响与补偿[D]. 西安: 西安电子科技大学, 2007. GAO Yujie. Effects and Compensation of Phase Noise in OFDM Systems [D]. Xi'an: Xidian University, 2007. (in Chinese)
[14] Cheema H M, Arsalan M, Salama K N, et al. A low-power 802.11 ad compatible 60 GHz phase-locked loop in 65nm CMOS [J]. Microwave and Optical Technology Letters, 2015,57(3): 660-667.
[15] 艾赳赳. 基于SC-FDE的60 GHz系统信道估计与相位噪声抑制[D]. 成都: 电子科技大学, 2013. AI Jiujiu. Channel Estimation and Phase Noise Suppression for SC-FDE based 60 GHz Communication Systems [D]. Chengdu: University of Electronic Science and Technology of China, 2013. (in Chinese)
[16] Tse D, Viswanath P. Fundamentals of Wireless Communication [M]. Cambridge: Cambridge University Press, 2005.
[1] LI Hang, GAO Zhen, ZHAO Ming, WANG Jing. Adaptive partial decode-and-forward of Turbo codes for OBP satellites[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(9): 925-929.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd