Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2017, Vol. 57 Issue (7) : 747-752     DOI: 10.16511/j.cnki.qhdxxb.2017.25.032
AUTOMOTIVE ENGINEERING |
Torque characteristics of a controllable centrifugal clutch for electric vehicles
SONG Haijun1,2, SONG Jian1, FANG Shengnan1, LI Fei1, TAI Yuzuo1, TRUONG Sinh Nguyen1
1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China;
2. Department of Mechanical Engineering, Academy of Armored Forces Engineering, Beijing 100072, China
Download: PDF(1259 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The adjustments of the engaged speed and torque is key for the control of centrifugal clutchs in electric vehicles automatic transmission. The factors affecting the clutch torque characteristics were analyzed to model the contact torque on the centrifugal shoe. The models for the uniform centrifugal force on the centrifugal shoe and the contact pressure between the shoe and drum are simplified to get an analytical expression for the clutch torque β. The regulation characteristics of the clutch engage speed and the torque about β are analyzed for speeds of 0° to 90° for automatic transmissions for electric vehicles. A virtual clutch prototype is used to verify the clutch torque regulation characteristics. The results show that the basic characteristics of the clutch torque regulation well are reflected by the β-model.
Keywords centrifugal clutch      electric vehicle      analytical model      contact speed      torque regulation     
ZTFLH:  U463.21  
Issue Date: 15 July 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SONG Haijun
SONG Jian
FANG Shengnan
LI Fei
TAI Yuzuo
TRUONG Sinh Nguyen
Cite this article:   
SONG Haijun,SONG Jian,FANG Shengnan, et al. Torque characteristics of a controllable centrifugal clutch for electric vehicles[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(7): 747-752.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2017.25.032     OR     http://jst.tsinghuajournals.com/EN/Y2017/V57/I7/747
  
  
  
  
  
  
  
  
  
  
  
  
[1] Sorniotti A, Pilone G L, Viotto F, et al. A novel seamless 2-speed transmission system for electric vehicles: Principles and simulation results [J]. Sae International Journal of Engines, 2011, 4(2): 2671-2685.
[2] Serrarens I A, van Liempt W, Weel I N, et al. Powershift module combination of friction brake and planetary gearset [J]. ATZ Worldwide, 2010, 112(6): 30-34.
[3] FANG Shengnan, SONG Jian, SONG Haijun, et al. Design and control of a novel two-speed uninterrupted mechanical transmission for electric vehicles [J]. Mechanical Systems & Signal Processing, 2016, 75(6): 473-493.
url: http://dx.doi.org/nical Systems
[4] 方圣楠, 宋健, 宋海军, 等. 基于最优控制理论的电动汽车机械式自动变速器换挡控制 [J]. 清华大学学报(自然科学版), 2016, 56(6): 580-586.FANG Shengnan, SONG Jian, SONG Haijun, et al. Shifting control of automated mechanical transmission for the electric vehicle based on optimal control theory [J]. J Tsinghua Univ (Sci & Tech), 2016, 56(6): 580-586. (in Chinese)
url: http://dx.doi.org/nghua Univ (Sci
[5] SONG Haijun, SONG Jian, FANG Shengnan, et al. Analysis and simulation of the novel two-speed uninterrupted transmission with centrifugal clutch for electric vehicle [C]//ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Boston, USA: ASME, 2015: V010T11A053.
[6] 李全德. 离心离合器和离心夹具技术体系构建与创新设计[D]. 苏州:苏州大学, 2008.LI Quande. Construction of Technological System and Innovative Design of Centrifugal Clutches and Centrifugal Fixtures [D]. Suzhou: Soochow University, 2008. (in Chinese)
[7] 张方宇, 桂良进, 范子杰. 鼓式制动器热应力磨损耦合行为的研究 [J]. 汽车工程, 2016, 38(4): 467-472.ZHANG Fangyu, GUI Liangjin, FAN Zijie. A study on the heat-stress-wear coupling behavior of drum brake [J]. Automotive Engineering, 2016, 38(4): 467-472. (in Chinese)
[8] 范久臣, 孙雪梅, 李洪洲, 等. 多次紧急制动工况下的鼓式制动器热结构耦合分析[J]. 北华大学学报:自然科学版, 2015, 16(3): 410-416.FAN Jiuchen, SUN Xuemei, LI Hongzhou, et al. Thermal-structure coupling analysis of drum break under multiple emergency braking conditions [J]. Journal of Beihua University (Natural Science), 2015, 16(3): 410-416. (in Chinese)
[9] 毛智东, 王学林, 胡于进, 等. 鼓式制动器接触分析[J]. 华中科技大学学报(自然科学版), 2002, 30(7): 71-73. MAO Zhidong, WANG Xuelin, HU Yujin, et al. The drum brake contact analysis [J]. J Huazhong Univ Sci & Tech (Nature Science Edition), 2002, 30 (7): 71-73. (in Chinese)
url: http://dx.doi.org/zhong Univ Sci
[10] Khairnar H P, Phalle V M, Mantha S S. Estimation of automotive brake drum-shoe interface friction coefficient under varying conditions of longitudinal forces using Simulink [J]. Friction, 2015, 3(3): 214-227.
[11] Stoica N A, Tudor A. Some aspects concerning the thermoplastic distortions of the brake drum-shoe contact with application to vehicles [J]. Journal of the Balkan Tribological Association, 2016, 22(1): 1-16.
[12] 靳少杰, 徐颖强, 林富华. 鼓式制动器摩擦片-鼓接触点确定方法及变化规律分析 [J]. 汽车工程, 2010, 32(5): 424-428.JIN Shaojie, XU Yingqiang, LIN Fuhua. The determination and change regularity of contact position between drum and lining of drum brake [J]. Automotive Engineering, 2010, 32 (5): 424-428. (in Chinese)
[13] 范久臣, 杨兆军, 刘长亮, 等. 鼓式制动器刚柔耦合虚拟样机 [J]. 吉林大学学报(工学版), 2009, 39(S1): 183-187.FAN Jiuchen, YANG Zhaojun, LIU Changliang, et al. Virtual prototype of drum brake based on rigid-flexible coupling method [J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(S1): 183-187. (in Chinese)
[1] BI Jun, DU Yujia, WANG Yongxing, ZUO Xiaolong. Optimization model of electric vehicle charging induction based on comprehensive satisfaction of users[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(11): 1750-1759.
[2] YANG Yang, ZHANG Tianyu, ZHU Yuting, YAO Enjian. Optimizing the deployment of charging systems on an expressway network considering the construction time sequence and the dynamic charging demand[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(7): 1163-1177,1219.
[3] QIU Bin, LIANG Hongyi, DONG Guohua, YING Zihao, LIU Yahui. Comparison of evaluation methods for domestic and international commercial demonstrations of fuel cell electric vehicles[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(3): 427-437.
[4] LI Yanlin, QIN Benke, BO Hanliang. Analytical model and verification of capacitance rod position measurement sensor[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(10): 1636-1644.
[5] WANG Jingyao, ZHENG Huaqing, GUO Jinghua, LUO Yugong. Distributed adaptive robust platoon control of intelligent electric vehicles with communication delays[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(9): 889-897.
[6] TIAN Feng, WANG Lijun, SUI Liqi, ZENG Yuanfan, ZHOU Xingyue, TIAN Guangyu. Active synchronizing control of transmission shifting without a synchronizer for electric vehicles[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(2): 101-108.
[7] SUI Liqi, TIAN Feng, LI Bo, ZENG Yuanfan, TIAN Guangyu, CHEN Hongxu. Nonlinear dynamics analyses of gear shifting with gear vibrations[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(2): 109-116.
[8] ZENG Yuanfan, CHEN Hongxu, WANG Lijun, TIAN Guangyu, ZHOU Weibo. Modeling and control of gear shifting of a non-synchronizer motor-transmission drive system[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(11): 910-919.
[9] ZHONG Biqing, HOU Zhichao, ZHAO Han, LIU Ruixue, DENG Bin. Experimental method for obtaining torsional vibration mechanical parameters of hybrid electric vehicle powertrain system[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(6): 482-489.
[10] TAI Yuzhuo, SONG Jian, LU Zhenghong, FANG Shengnan, NGUYEN Truong Sinh. Control algorithm for a seamless shifting 2-speed transmission based on the optimal trajectory[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(4): 417-423.
[11] ZHANG Shuwei, FENG Guixuan, FAN Yuezhen, WAN Shuang, LUO Yugong. Large-scale electric vehicle charging path planning based on information interaction[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(3): 279-285.
[12] XIE Laiqing, ZHANG Donghao, LUO Yugong, CHEN Rui, LI Keqiang. Radar sharing energy-saving control strategy for intelligent hybrid electric vehicle[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(3): 286-291,297.
[13] XIE Haiming, LIN Chengtao, LIU Tao, TIAN Guangyu, HUANG Yong. Piecewise tracking energy optimization approach for an extended-range electric city bus[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(5): 476-482.
[14] NGUYEN Truong Sinh, SONG Jian, FANG Shengnan, SONG Haijun, TAI Yuzhuo, LI Fei. Simulation and experimental demonstration of a seamless two-speed automatic mechanical transmission for electric vehicles[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(10): 1106-1113.
[15] FANG Shengnan, SONG Jian, SONG Haijun, TAI Yuzhuo, TRUONG Sinh Nguyen. Shifting control of automatic mechanical transmissions for electric vehicles based on optimal control theory[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(6): 580-586.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd