Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2017, Vol. 57 Issue (7) : 753-762     DOI: 10.16511/j.cnki.qhdxxb.2017.25.033
AUTOMOTIVE ENGINEERING |
Dynamic and static compression tests and FEA analyses of aluminum foam specimen with variable density in the loading direction
LÜ Zhenhua, SUN Jingxuan
Department of Automotive Engineering, Tsinghua University, Beijing 100084, China
Download: PDF(3647 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Closed-cell aluminum foams with variable densities in the loading direction are widely used. A finite-element mode (FEM) is used to model the foam deformation and energy absorption characteristics with dynamic and quasi-static compression tests. The results show that large aluminum foam specimens with variable densities have density-dependent layered deformation characteristics, which differ from uniform-density aluminum foams. Predictions of an FEM model with a layered variable density and layered element sizes are compared with those of a conventional FEA model with uniform density and element size. The computation results show that the layered gradual deformation characteristics can be simulated by the layered models with quasi-static and dynamic compression simulation results agreeing well with experimental data. The uniform model cannot accurately predict the layered gradual deformation characteristics. The element size of the layered models influences the simulated layered gradual deformation characteristics with simulation results using the layered model with element sizes equal to the foam cell diameter agreeing best with the experimental data. These results will improve engineering designs using aluminum foam materials.
Keywords aluminum foam with variable density      dynamic compressional mechanical characteristics      FE model with layered variable density and element size      layered gradual deformation and energy absorption characteristics     
ZTFLH:  O347.3  
Issue Date: 15 July 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cite this article:   
LÜ Zhenhua, SUN Jingxuan. Dynamic and static compression tests and FEA analyses of aluminum foam specimen with variable density in the loading direction[J]. Journal of Tsinghua University(Science and Technology),2017, 57(7): 753-762.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2017.25.033     OR     http://jst.tsinghuajournals.com/EN/Y2017/V57/I7/753
  
  
  
  
  
  
  
  
  
  
  
  
  
  
[1] Gibson L, Ashby M. Cellular Solids: Structure and Properties [M]. 2nd ed. Cambridge, UK: Cambridge University Press, 1997.
[2] Giorgi M, Carofalo A, Dattoma V, et al. Aluminum foams structural modelling [J]. Computers and Structures, 2010, 88: 25-35.
url: http://dx.doi.org/10.1016/j.compstruc.2009.06.005
[3] 胡永乐, 王峰超, 胡时胜. 泡沫铝经验型动态本构模型及其在LS-DYNA中的实现 [J]. 兵工学报, 2014, 35(增刊2):46-50.HU Yongle, WANG Fengchao, HU Shisheng. An empirical dynamic constitutive model for aluminum foams and its implementation in LS-DYNA [J]. Acta Armamentarii, 2014, 35 (Suppl. 2): 46-50. (in Chinese)
[4] Reyes A, Hopperstad O, Berstad T, et al. Constitutive modeling of aluminum foam including fracture and statistical variation of density [J]. European Journal of Mechanics A/Solids, 2003, 22: 815-835.
url: http://dx.doi.org/10.1016/j.euromechsol.2003.08.001
[5] 张健, 赵桂平, 卢天健. 泡沫金属在冲击载荷下的动态压缩行为 [J]. 爆炸与冲击, 2014, 34(3):278-284.ZHANG Jian, ZHAO Guiping, LU Tianjian. High speed compression behavior of metallic cellular materials under impact loading [J]. Explosion and Shock Waves, 2014, 34(3): 278-284. (in Chinese)
[6] Beals J, Thompson M. Density gradient effects on aluminum foam compression behavior [J]. Journal of Materials Science, 1997, 32: 3595-3600.
url: http://dx.doi.org/10.1023/A:1018670111305
[7] Deshpande V, Fleck N. Isotropic constitutive models for metallic foams [J]. Journal of the Mechanics and Physics of Solids, 2000, 48: 1253-1283.
url: http://dx.doi.org/10.1016/S0022-5096(99)00082-4
[8] Deshpande V, Fleck N. High strain rate compressive behavior of aluminum alloy foams [J]. International Journal of Impact Engineering, 2000, 24: 277-298.
url: http://dx.doi.org/10.1016/S0734-743X(99)00153-0
[9] CUI Liang, Kiernan S, Gilchrist M. Designing the energy absorption capacity of functionally graded foam materials [J]. Materials Science and Engineering A, 2009, 507: 215-225.
url: http://dx.doi.org/10.1016/j.msea.2008.12.011
[10] Andrews E, Sanders W, Gibson L. Compressive and tensile behavior of aluminum foams [J]. Materials Science and Engineering A, 1999, 270: 113-124.
url: http://dx.doi.org/10.1016/S0921-5093(99)00170-7
[11] Mukai T, Kanahashi H, Miyoshi T, el at. Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading [J]. Scripta Materialia, 1999, 40 (8): 921-927.
[12] 高善清, 王高朋. 泡沫铝材料抗爆炸冲击问题研究 [J]. 金属功能材料, 2013, 20(6):45-52. GAO Shanqing, WANG Gaopeng. Study on explosion and shock wave resistance of aluminum foam material [J]. Metallic Functional Materials, 2013, 20(6): 45-52. (in Chinese)
[13] 王永刚, 施绍裘, 王礼立. 采用改进的SHPB方法对泡沫铝动态力学性能的研究 [J]. 实验力学, 2003, 18(2):257-264.WANG Yonggang, SHI Shaoqiu, WANG Lili. An improved SHPB method and its application in the study of dynamic mechanical behavior of aluminum foams [J]. Journal of Experimental Mechanics, 2013, 18 (2): 257-264. (in Chinese)
[14] 丁圆圆, 杨黎明, 王礼立. 泡沫铝材料动态本构参数的实验确定 [J]. 爆炸与冲击, 2015, 35(1):1-8. DING Yuanyuan, YANG Liming, WANG Lili. Experimental determination of dynamic constitutive parameters for aluminum foams [J]. Explosion and Shock Waves, 2015, 35 (1): 1-8. (in Chinese)
[15] 章超, 徐松林, 王鹏飞, 等. 不同冲击速度下泡沫铝变形和应力的不均匀性 [J]. 爆炸与冲击, 2015, 35(4):567-575.ZHANG Chao, XU Songlin, WANG Pengfei, et al. Deformation and stress nonuniformity of aluminum foam under different impact speeds [J]. Explosion and Shock Waves, 2015, 35 (4): 567-575. (in Chinese)
[16] Hallquist J. LS-DYNA Theoretical Manual [M]. Livermore: Livermore Software Technology Corporation, 2006.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd