Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2017, Vol. 57 Issue (7) : 780-784     DOI: 10.16511/j.cnki.qhdxxb.2017.25.037
NUCLEAR ENERGY AND NEW ENERGY |
Crystal plasticity constitutive model for BCC based on the dislocation density
NIE Junfeng, TANG Zhenrui, ZHANG Haiquan, LI Hongke, WANG Xin
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
Download: PDF(1358 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Crystal plasticity theory is a fundamental theory that combines the crystal microscopic slip mechanism with macroscopic plastic deformation to predict meso-scale plastic deformation. The dislocation density has an important influence on the hardening behavior of metal crystals. This paper presents a constitutive model based on crystal plasticity theory and dislocation motion theory for the BCC crystal structure. The model is used to study the mechanical behavior of a BCC lattice. Using the UMAT subroutine in ABAQUS for numerical simulations of a uniaxial tensile tests of single crystal and polycrystal iron. The results show that the constitutive model effectively simulates the mechanical behavior of the uniaxial tensile test for single crystal and polycrystal iron.
Keywords crystal plasticity      dislocation motion      body center cubic (BCC)      uniaxial tensile      finite element method (FEM)     
ZTFLH:  TB125  
  O34  
Issue Date: 15 July 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
NIE Junfeng
TANG Zhenrui
ZHANG Haiquan
LI Hongke
WANG Xin
Cite this article:   
NIE Junfeng,TANG Zhenrui,ZHANG Haiquan, et al. Crystal plasticity constitutive model for BCC based on the dislocation density[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(7): 780-784.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2017.25.037     OR     http://jst.tsinghuajournals.com/EN/Y2017/V57/I7/780
  
  
  
  
[1] Hill R. Generalized constitutive relations for incremental deformation of metal crystals by multislip [J]. Journal of the Mechanics and Physics of Solids, 1966, 14(2): 95-102.
[2] Hill R. The essential structure of constitutive laws for metal composites and polycrystals [J]. Journal of the Mechanics and Physics of Solids, 1967, 15(2): 79-95.
[3] Hill R, Rice J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain [J]. Journal of the Mechanics and Physics of Solids, 1972, 20(6): 401-413.
[4] Asaro R J, Rice J R. Strain localization in ductile single crystals [J]. Journal of the Mechanics and Physics of Solids, 1977, 25(5): 309-338.
[5] Asaro R J. Micromechanics of crystals and polycrystals [J]. Advances in Applied Mechanics, 1983, 23(8): 1-115.
[6] Peirce D, Shih C F, Needleman A. A tangent modulus method for rate dependent solids [J]. Computers & Structures, 1984, 18(5): 875-887.
url: http://dx.doi.org/ters
[7] Clough R W. The finite element method in plane stress analysis [C]//Proceedings of the 2nd ASCE Conference on Electronic Computation. Pittsburgh, USA: ASCE, 1960.
[8] 王自强, 段祝平. 塑性细观力学 [M]. 北京:北京大学出版社, 1995.WANG Ziqiang, DUAN Zhuping. Plastic Meso Mechanics [M]. Beijing: Peking University Press, 1995. (in Chinese)
[9] Busso E P. Cyclic Deformation of Monocrystalline Nickel Aluminide and High Temperature Coatings [D]. Cambridge: Massachusetts Institute of Technology, 2005.
[10] Keh A S. Work hardening and deformation sub-structure in iron single crystals deformed in tension at 298 K [J]. Philosophical Magazine, 1965, 12: 9-30.
url: http://dx.doi.org/10.1080/14786436508224942
[11] Suzuki T, Koizumi H, Kirchner H O K. Plastic flow stress of b.c.c. transition metals and the Peierls potential [J]. Acta Metallurgica Et Materialia, 1995, 43(6): 2177-2187.
[12] Johnson R A, Oh D J. Analytic embedded atom method model for BCC metals [J]. Journal of Materials Research, 1989, 4(5): 1195-1201.
[13] Brunner D, Diehl J. Strain-rate and temperature dependence of the tensile flow stress of high-purity α-iron above 250 K (regime I) studied by means of stress-relaxation tests [J]. Physica Status Solidi, 1991, 124(1): 155-170.
[14] Spitzig W A, Keh A S. The role of internal and effective stresses in the plastic flow of iron single crystals [J]. Metallurgical & Materials Transactions B, 1970, 1(12): 3325-3331.
url: http://dx.doi.org/lurgical
[15] Kocks U F. Thermodynamics and Kinetics of Slip [M]. Oxford: Pergamon Press, 1975.
[16] Hutchinson J W. Plastic stress-strain relations of F.C.C polycrystalline metals hardening according to Taylor's rule [J]. Journal of the Mechanics & Physics of Solids, 1964, 12(1): 11-24.
url: http://dx.doi.org/al of the Mechanics
[1] GUAN Liwen, YANG Liangliang, WANG Liping, CHEN Xueshang, WANG Yaohui, HUANG Ke. Modeling and analysis of intermittent cutting temperature field for the “S” test specimens[J]. Journal of Tsinghua University(Science and Technology), 2016, 56(2): 192-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd