Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2017, Vol. 57 Issue (10) : 1014-1021     DOI: 10.16511/j.cnki.qhdxxb.2017.25.039
COMPUTER SCIENCE AND TECHNOLOGY |
Hybrid recommendation approach enhanced by deep learning
ZHANG Min, DING Biyuan, MA Weizhi, TAN Yunzhi, LIU Yiqun, MA Shaoping
State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
Download: PDF(1022 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Collaborative filtering based on matrix factorization has been very successful, while cold-start and data sparseness problems have not been well resolved. Hence, many studies have attempted to include review information into rating predictions. This paper presents a hybrid model that introduces deep learning into recommendation system with collaborative filtering. The algorithm combines a stacked denoising auto encoder (SDAE) with a latent factor model (LFM) to make use of both review and rating information to improve the rating predictions. Evaluations on a large, commonly used Amazon dataset show that this approach significantly improves the rating prediction accuracy in comparison with traditional models, with up to 64.43% better predictions.
Keywords deep learning      collaborative filtering      hybrid recommendation     
ZTFLH:  TP391.2  
Issue Date: 15 October 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Min
DING Biyuan
MA Weizhi
TAN Yunzhi
LIU Yiqun
MA Shaoping
Cite this article:   
ZHANG Min,DING Biyuan,MA Weizhi, et al. Hybrid recommendation approach enhanced by deep learning[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(10): 1014-1021.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2017.25.039     OR     http://jst.tsinghuajournals.com/EN/Y2017/V57/I10/1014
  
  
  
  
  
[1] Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems[J]. IEEE Computer, 2009, 42(8):30-37.
[2] Koran Y. Factorization meets the neighborhood:A multifaceted collaborative filtering model[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'08). Las Vegas, NV, USA:ACM, 2008:426-434.
[3] Lee D D. Algorithms for non-negative matrix factorization[J]. Advances in Neural Information Processing Systems, 2015, 13(6):556-562.
[4] Mcauley J, Leskovec J. Hidden factors and hidden topics:Understanding rating dimensions with review text[C]//ACM Conference on Recommender Systems. Hong Kong, China:ACM, 2013:165-172.
[5] Almahairi A, Kastner K, Cho K, et al. Learning distributed representations from reviews for collaborative filtering[C]//Proceedings of the 9th ACM Conference on Recommender Systems. Vienna, Austria:ACM, 2015:147-154.
[6] Sang S L, Chung T, Mcleod D. Dynamic item recommendation by topic modeling for social networks[C]//Eighth International Conference on Information Technology:New Generations. Las Vegas, NV, USA:IEEE, 2011:884-889.
[7] Bao Y, Fang H, Zhang J. TopicMF:Simultaneously exploiting ratings and reviews for recommendation[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence. Quebec, Canada:AAAI, 2014:2-8.
[8] Blei D M, Ng A Y. Latent dirchlet allocation[J]. Journal of Machine Learning Research, 2003, 3(1):993-1022.
[9] Almahairi A, Kastner K, Cho K, et al. Learning distributed representations from reviews for collaborative filtering[C]//Proceedings of the 9th ACM Conference on Recommender Systems. Vienna, Austria:ACM, 2015:147-154.
[10] Wang C, Blei D M. Collaborative topic modeling for recommending scientific articles[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA:ACM, 2011:448-456.
[11] Lawrence S, Giles C L, Tsoi A C, et al. Face recognition:A convolutional neural-network approach[J]. IEEE Transactions on Neural Networks, 1997, 8(1):98-113.
[12] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. (2015-04-10). http://arxiv.org/abs/1409.1556.
url: http://arxiv.org/abs/1409.1556.
[13] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA:IEEE, 2015:1-9.
[14] Graves A. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
[15] Graves A. Supervised sequence labelling with recurrent neural networks[J]. Studies in Computational Intelligence, 2012, 385:1-124.
[16] Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks[J]. Advances in Neural Information Processing Systems, 2014, 4:3104-3112.
[17] 陈达. 基于深度学习的推荐系统研究[D]. 北京:北京邮电大学, 2014.CHEN Da. Analysis on Deep Learning Based Recommendation System[D]. Beijing:Beijing University of Posts and Telecommunications, 2014.(in Chinese)
[18] 杨宇. 基于深度学习特征的图像推荐系统[D]. 成都:电子科技大学, 2015.YANG Yu. Image Recommendation System Based on Deep Learning[D]. Chengdu:University of Electronic Science and Technology of China, 2015.(in Chinese)
[19] Wang H, Wang N, Yeung D Y. Collaborative deep learning for recommender systems[C]//Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA:ACM, 2014:1235-1244.
[20] Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising autoencoders:Learning useful representations in a deep network with a local denoising criterion.[J]. Journal of Machine Learning Research, 2010, 11(6):3371-3408.
[1] YANG Bo, QIU Lei, WU Shu. A collaborative filtering model based on heterogeneous graph neural network[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1339-1349.
[2] JIA Fan, KANG Shuya, JIANG Weiqiang, WANG Guangtao. Multi-user recommendation algorithm based on vulnerability similarity[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(9): 1399-1407.
[3] HUANG Ben, KANG Fei, TANG Yu. A real-time detection method for concrete dam cracks based on an object detection algorithm[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(7): 1078-1086.
[4] MIAO Xupeng, ZHANG Minxu, SHAO Yingxia, CUI Bin. PS-Hybrid: Hybrid communication framework for large recommendation model training[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(9): 1417-1425.
[5] MEI Jie, LI Qingbin, CHEN Wenfu, WU Kun, TAN Yaosheng, LIU Chunfeng, WANG Dongmin, HU Yu. Overtime warning of concrete pouring interval based on object detection model[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(7): 688-693.
[6] GUAN Zhibin, WANG Xiaomeng, XIN Wei, WANG Jiajie. Data generation and annotation method for source code defect detection[J]. Journal of Tsinghua University(Science and Technology), 2021, 61(11): 1240-1245.
[7] HAN Kun, PAN Haiwei, ZHANG Wei, BIAN Xiaofei, CHEN Chunling, HE Shuning. Alzheimer's disease classification method based on multi-modal medical images[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(8): 664-671,682.
[8] WANG Zhiguo, ZHANG Yujin. Anomaly detection in surveillance videos: A survey[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(6): 518-529.
[9] JIANG Wenbin, WANG Hongbin, LIU Pai, CHEN Yuhao. Hybrid computational strategy for deep learning based on AVX2[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(5): 408-414.
[10] YU Chuanming, YUAN Sai, HU Shasha, AN Lu. Deep learning multi-language topic alignment model across domains[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(5): 430-439.
[11] SONG Xinrui, ZHANG Xianqi, ZHANG Zhan, CHEN Xinhao, LIU Hongwei. Multi-sensor data fusion for complex human activity recognition[J]. Journal of Tsinghua University(Science and Technology), 2020, 60(10): 814-821.
[12] ZHANG Sicong, XIE Xiaoyao, XU Yang. Intrusion detection method based on a deep convolutional neural network[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(1): 44-52.
[13] LIU Weidong, LIU Yaning. Variational autoencoder with side information in recommendation systems[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(8): 698-702.
[14] LU Xiaofeng, JIANG Fangshuo, ZHOU Xiao, CUI Baojiang, YI Shengwei, SHA Jing. API based sequence and statistical features in a combined malware detection architecture[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(5): 500-508.
[15] ZHANG Xinyu, GAO Hongbo, ZHAO Jianhui, ZHOU Mo. Overview of deep learning intelligent driving methods[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(4): 438-444.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd