Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2017, Vol. 57 Issue (10) : 1089-1095     DOI: 10.16511/j.cnki.qhdxxb.2017.25.050
AUTOMATION |
Quantum process tomography based on distributed compressed sensing
YUAN Xiaohu, WU Rebin, LI Chunwen
Department of Automation, Tsinghua University, Beijing 100084, China
Download: PDF(1436 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Quantum process tomography (QPT) is one of the foundations of quantum information science research, but the required experimental resources during QPT grow exponentially with the number of qubits. Recently, a compressed sensing QPT (CSQPT) was proposed that significantly reduces the required resources and the post-processing time based on the sparseness of the process matrix. However, the quantum channel analysis needs to simultaneously identify a variety of quantum gates and there are always outliers during the QPT process. This paper describes a distributed compressed sensing quantum process tomography (DCSQPT) method to identify the multi quantum channel tomography while effectively attenuating outliers through collaborative sparse learning. Simulations show that this method is robust to outlier data and accurately reconstructs the process matrix compared to the compressed sensing QPT method while significantly improving the quantum process tomography identification speed.
Keywords quantum process tomography      distributed compressed sensing      quantum channel     
ZTFLH:  N945.14  
Issue Date: 15 October 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YUAN Xiaohu
WU Rebin
LI Chunwen
Cite this article:   
YUAN Xiaohu,WU Rebin,LI Chunwen. Quantum process tomography based on distributed compressed sensing[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(10): 1089-1095.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2017.25.050     OR     http://jst.tsinghuajournals.com/EN/Y2017/V57/I10/1089
  
  
  
  
  
[1] Nielsen M A, Chuang I L. Quantum Computation and Quantum Information[M]. Cambridge:Cambridge University Press, 2010.
[2] Kofman A G, Korotkov A N. Two-qubit decoherence mechanisms revealed via quantum process tomography[J]. Physical Review A, 2009, 80(4), 042103.
[3] Mohseni M, Rezakhani A T, Lidar D A. Quantum-process tomography:Resource analysis of different strategies[J]. Physical Review A, 2008, 77(3), 032322.
[4] Mohseni M, Rezakhani A T. Equation of motion for the process matrix:Hamiltonian identification and dynamical control of open quantum systems[J]. Physical Review A, 2009, 80(1), 010101.
[5] Knill E, Leibfried D, Reichle R, et al. Randomized benchmarking of quantum gates[J]. Physical Review A, 2008, 77(1), 012307.
[6] Flammia S T, Liu Y K. Direct fidelity estimation from few Pauli measurements[J]. Physical Review Letters, 2011, 106(23), 230501.
[7] Kosut R L. Quantum process tomography via l1-norm minimization[J]. arXiv:0812.4323, 2008.
[8] Shabani A, Kosut R L, Mohseni M, et al. Efficient measurement of quantum dynamics via compressive sensing[J]. Physical Review Letters, 2011, 106(10), 100401.
[9] Donoho D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
[10] Cands E, Tao T. Near-optimal signal recovery from random projections:Universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12):5406-5425.
[11] Lustig M, Donoho D, Pauly J M. Sparse MRI:The application of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine, 2007, 58(6):1182-1195.
[12] MA Jianwei. Single-pixel remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing Letters, 2009, 6(2):199-203.
[13] Hennenfent G, Herrmann F J. Simply denoise:Wavefield reconstruction via jittered under sampling[J]. Geophysics, 2008, 73(13):V19-V28.
[14] Rodionov A V, Veitia A, Barends R, et al. Compressed sensing quantum process tomography for superconducting quantum gates[J]. Physical Review B, 2014, 90(14), 144504.
[15] Prades-Nebot J, Ma Y, Huang T. Distributed video coding using compressive sampling[C]//Picture Coding Symposium. Chicago, IL, USA:IEEE, 2009:1-4.
[16] Yang H, Huang L, Xu H, et al. Distributed compressed sensing in wireless local area networks[J]. International Journal of Communication Systems, 2014, 27(11):2723-2743.
[17] Je?ek M, Fiurášek J, Hradil Z. Quantum inference of states and processes[J]. Physical Review A, 2003, 68(1), 012305.
[18] Chow J M, Gambetta J M, Tornberg L, et al. Randomized benchmarking and process tomography for gate errors in a solid-state qubit[J]. Physical Review Letters, 2009, 102(9), 090502.
[19] Berg E, Friedlander M P. Joint-sparse recovery from multiple measurements[J]. arXiv:0904.2051, 2009.
[20] Liu H, Liu Y, Yu Y, et al. Simultaneous prototype selection and outlier isolation for traffic sign recognition:A collaborative sparse optimization method[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, China:IEEE, 2014:2138-2143.
[21] Li K, Zhang H, Kuang S, et al. An improved robust ADMM algorithm for quantum state tomography[J]. Quantum Information Processing, 2016, 15(6):2343-2358.
[22] Tropp J A, Gilbert A C, Strauss M J. Algorithms for simultaneous sparse approximation. Part I:Greedy pursuit[J]. Signal Processing, 2006, 86(3):572-588.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd