Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  百年期刊
Journal of Tsinghua University(Science and Technology)    2017, Vol. 57 Issue (3) : 240-243     DOI: 10.16511/j.cnki.qhdxxb.2017.26.003
COMPUTER SCIENCE AND TECHNOLOGY |
Speaker verification based on SVM and total variability
GUO Wu1, ZHANG Sheng1, XU Jie2, HU Guoping3, MA Xiaokong1
1. Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230026, China;
2. National Computer Network Emergency Response Technical Team Coordination Center of China, Beijing 100029, China;
3. IFLYTEK Corporation, Hefei 230088, China
Download: PDF(1117 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The total variability factor extractor and the probability linear discriminant analysis (PLDA) algorithms have been the state-of-the-art for text-independent speaker verification. This study combines a support vector machine (SVM) with the PLDA. The low dimensional i-vectors of the total variability system are used as the inputs to the support vector machine, with the cosine kernel function used to achieve better discrimination. This method achieves considerable performance improvement with the PLDA system. Furthermore, the score fusion of the SVM with the PLDA give even better results. Tests were conducted on the female part of the interview section of the NIST 2012 core test corpus. The detection cost function (DCF) of the fusion system was reduced by 25.1% for common condition 1 and 25.2% for condition 3 compared with the best results for a single system.
Keywords speaker verification      total variability      support vector machine      kernel function     
ZTFLH:  TN912.34  
Issue Date: 15 March 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Wu
ZHANG Sheng
XU Jie
HU Guoping
MA Xiaokong
Cite this article:   
GUO Wu,ZHANG Sheng,XU Jie, et al. Speaker verification based on SVM and total variability[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(3): 240-243.
URL:  
http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2017.26.003     OR     http://jst.tsinghuajournals.com/EN/Y2017/V57/I3/240
  
  
  
  
[1] Reynolds D A, Quatieri T F, Dunn R B. Speaker verification using adapted Gaussian mixture models[J]. Digital Signal Processing, 2000, 10(1):19-41.
[2] Kenny P, Boulianne G, Ouellet P, et al. Joint factor analysis versus eigenchannels in speaker recognition[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(4):1435-1447.
[3] Dehak N, Kenny P J, Dehak R, et al. Front-end factor analysis for speaker verification[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(4):788-798.
[4] Prince S J D, Elder J H. Probabilistic linear discriminant analysis for inferences about identity[C]//2007 IEEE 11th International Conference on Computer Vision. Rio de Janeiro, Brazil:IEEE Press, 2007:1-8.
[5] Burget L, Plchot O, Cumani S, et al. Discriminatively trained probabilistic linear discriminant analysis for speaker verification[C]//2011 IEEE international conference on acoustics, speech and signal processing (ICASSP). Prague, Czech Republic:IEEE Press, 2011:4832-4835.
[6] Jiang Y, Kong A L, Wang L. PLDA in the i-supervector space for text-independent speaker verification[J]. Eurasip Journal on Audio Speech and Music Processing, 2014, 2014(1):1-13.
[7] Kenny P, Stafylakis T, Ouellet P, et al. PLDA for speaker verification with utterances of arbitrary duration[C]//2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Brisbane, Australia:IEEE Press, 2013:7649-7653.
[8] Li N, Mak M W. SNR-invariant PLDA modeling in nonparametric subspace for robust speaker verification[J]. IEEE/ACM Transactions on Audio Speech and Language Processing, 2015, 23(10):1648-1659.
[9] Bourouba H, Korba C A, Djemili R. Novel approach in speaker identification using SVM and GMM[J]. Control Engineering & Applied Informatics, 2013, 15(3):87-95.
url: http://dx.doi.org/ol Engineering
[10] Ding I J, Yen C T, Ou D C. A method to integrate GMM, SVM and DTW for speaker recognition[J]. International Journal of Engineering and Technology Innovation, 2014, 4(1):38-47.
[11] Campbell W M, Sturim D E, Reynolds D A, et al. SVM based speaker verification using a GMM supervector kernel and NAP variability compensation[C]//2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings. Brisbane, Australia:IEEE Press, 2006, 1:I-I.
[12] Solomonoff A, Quillen C, Campbell W M. Channel compensation for SVM speaker recognition[C]//ICASSP 2005, Acoustics, Speech, and Signal Processing Proceedings. Philadelphia, PA, USA:IEEE Press, 2010:629-632."
[1] TU Shouzhong, YANG Jing, ZHAO Lin, ZHU Xiaoyan. Filtering Chinese microblog topics noise algorithm based on a semi-supervised model[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(3): 178-185.
[2] KARI·Tusongjiang, GAO Wensheng, ZHANG Ziwei, MO Wenxiong, WANG Hongbing, CUI Yiping. Power transformer fault diagnosis based on a support vector machine and a genetic algorithm[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(7): 623-629.
[3] CHEN Dongqing, ZHANG Puhan, WANG Huazhong. Intrusion detection for industrial control systems based on an improved SVM method[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(4): 380-386.
[4] XU Hongping, LIU Yang, YI Hang, YAN Xiaotao, KANG Jian, ZHANG Wenjin. Abnormal traffic flow identification for a measurement and control network for launch vehicles[J]. Journal of Tsinghua University(Science and Technology), 2018, 58(1): 20-26,34.
[5] LIU Chengying, WU Hao, WANG Liping, ZHANG Zhi. Tool wear state recognition based on LS-SVM with the PSO algorithm[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(9): 975-979.
[6] IMAM Seyyare, PARHAT Rayilam, HAMDULLA Askar, LI Zhijun. Keyword extraction algorithms for emotion recognition from Uyghur text[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(3): 270-273.
[7] XIN Zhe, ZOU Ruobing, LI Shengbo, YU Jiaying, DAI Yifan, CHEN Hailiang. Target recognition around a vehicle based on an ultrasonic sensor array[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(12): 1287-1295.
[8] YANG Diange, HE Changwei, LI Man, HE Qiguang. Vehicle steering and lane-changing behavior recognition based on a support vector machine[J]. Journal of Tsinghua University(Science and Technology), 2015, 55(10): 1093-1097.
[9] Chao ZHANG, Yi LIU, Hui ZHANG, Hong HUANG. Study on urban short-term gas load forecasting based on support vector machine model[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(3): 320-325.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Journal of Tsinghua University(Science and Technology), All Rights Reserved.
Powered by Beijing Magtech Co. Ltd